Answer:
The shortest distance is
Explanation:
The free body diagram of this question is shown on the first uploaded image
From the question we are told that
The speed of the bicycle is 
The distance between the axial is 
The mass center of the cyclist and the bicycle is
behind the front axle
The mass center of the cyclist and the bicycle is
above the ground
For the bicycle not to be thrown over the
Momentum about the back wheel must be zero so

=> 
=> 
Here 
So 
Apply the equation of motion to this motion we have

Where 
and
since the bicycle is coming to a stop

=>
Answer:

Explanation:
The electric field equation of a electromagnetic wave is given by:
(1)
- E(max) is the maximun value of E, it means the amplitude of the wave.
- k is the wave number
- ω is the angular frequency
We know that the wave length is λ = 700 nm and the peak electric field magnitude of 3.5 V/m, this value is correspond a E(max).
By definition:
And the relation between λ and f is:




The angular frequency equation is:


![\omega=2.69*10^{15} [rad/s]](https://tex.z-dn.net/?f=%5Comega%3D2.69%2A10%5E%7B15%7D%20%5Brad%2Fs%5D)
Therefore, the E equation, suing (1), will be:
(2)
For the magnetic field we have the next equation:
(3)
It is the same as E. Here we just need to find B(max).
We can use this equation:



Putting this in (3), finally we will have:
(4)
I hope it helps you!
Answer:
yes
Explanation:
its not a good thing for the rest of your life but you have a PS4
I would assume air resistance is negligible and so the acceleration of the package would be approximately 9.81 m/s².
Taking downwards as positive, use v²=u²+2as.
v²=(-2)²+2(9.81)(14)
v=16.7 m/s
Answer:
The answer is 1.0 N
Explanation:
inclination of tray=12^{\circ}
gravitational Force=5 N
Now this gravitational force has two component i.e.
5\sin \theta is parallel to the tray =1.039 N
5\cos \theta is perpendicular to the tray =4.890 N