Answer:
Work done, W = 0.0219 J
Explanation:
Given that,
Force constant of the spring, k = 290 N/m
Compression in the spring, x = 12.3 mm = 0.0123 m
We need to find the work done to compress a spring. The work done in this way is given by :


W = 0.0219 J
So, the work done by the spring is 0.0219 joules. Hence, this is the required solution.
Momentum = mass x velocity
So both mass and velocity affect an object's momentum.
Answer:
v = √2G
/ R
Explanation:
For this problem we use energy conservation, the energy initiated is potential and kinetic and the final energy is only potential (infinite r)
Eo = K + U = ½ m1 v² - G m1 m2 / r1
Ef = - G m1 m2 / r2
When the body is at a distance R> Re, for the furthest point (r2) let's call it Rinf
Eo = Ef
½ m1v² - G m1
/ R = - G m1
/ R
v² = 2G
(1 / R - 1 / Rinf)
If we do Rinf = infinity 1 / Rinf = 0
v = √2G
/ R
Ef = = - G m1 m2 / R
The mechanical energy is conserved
Em = -G m1
/ R
Em = - G m1
/ R
R = int ⇒ Em = 0