<span>In a
real machine, the work output is always less than the work input is true. The answer
is letter A. it follows the law of entropy where no energy can be converted completely
into work. Under this law, Carnot’s theorem states that Carnot’s engine can
perform 100% of work. However, no such engine has ever succeeded the conversion
of work into 100%. The greatest efficiency so far is at 80%. Because there will always be factors that
could affect the conversion of work. </span>
Answer:
B) with 9/10 submerged
Explanation:
= mass of ice cube
= density of soft drink
= Volume of soft drink displaced
ice cube floats in the soft drink when the force of buoyancy on it balances its weight. Force of buoyancy acting on the cube in upward direction is same as the weight of the soft drink displaced. hence we can write
weight of ice cube = weight of soft drink displaced


we see that the acceleration due to gravity cancel out both side and hence it does affect as astronaut is on earth on in a lunar module.
Answer: C
Explanation: Side post terminals need to be removed to inspect them for corrosion.
Over tightening the terminal bolt can damage side post terminals.
The battery terminals and cable ends can corrode especially when the battery or car is not used for a long period of time. Corrosion limits a battery's lifespan and so should be prevented. To inspect the areas where corrosion occur on a side-post battery, you need to remove the terminals.
Also, it is true that over tightening the terminal bolt can damage the side post terminals. The covering on the battery can become twisted, and make the seals on the terminals leak.
If the boat is floating, then it's just sitting there, and not accelerating
up or down. That means the vertical forces on it must be balanced.
So if its weight (acting downward) is 100 newtons, then the buoyant
force on it (acting upward) must also be 100 newtons.
Answer:
λ = 5.2 x 10⁻⁷ m = 520 nm
Explanation:
From Young's Double Slit Experiment, we know the following formula for the distance between consecutive bright fringes:
Δx = λL/d
where,
Δx = fringe spacing = distance of 1st bright fringe from center = 0.00322 m
L = Distance between slits and screen = 3.1 m
d = Separation between slits = 0.0005 m
λ = wavelength of light = ?
Therefore,
0.00322 m = λ(3.1 m)/(0.0005 m)
λ = (0.00322 m)(0.0005 m)/(3.1 m)
<u>λ = 5.2 x 10⁻⁷ m = 520 nm</u>