1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gogolik [260]
3 years ago
5

NVM hwaskdhslak djklasj dkjaskj dklasj kJKS KLj klskla

Physics
2 answers:
My name is Ann [436]3 years ago
5 0
Yes, i agree with your statement
svet-max [94.6K]3 years ago
5 0

hwaskdhslak djklasj dkjaskj.

You might be interested in
An object of mass 2.0 kg is attached to the top of a vertical spring that is anchored to the floor. The unstressed length of the
poizon [28]

Answer:

The value is A  =  0.014 \  m

Explanation:

From the question we are told that

    The mass of the object is  m  =  2.0 \  kg

    The unstressed length of the string is  l  =  0.08 \  m

    The length of the spring when it is  at equilibrium is  l_e = 5.9 \  cm  =  0.059 \  m

      The initial speed (maximum speed)of the spring when given a downward blow v  =  0.30 \  m/s

Generally the maximum speed  of the spring  is mathematically represented as

           u =  A *  w

Here A is maximum height above the floor (i.e the maximum amplitude)

            and w is the angular frequency which is mathematically represented as

       w = \sqrt{\frac{k}{m} }

So

        u =  A *   \sqrt{\frac{k}{m} }

=>      A  =  u *   \sqrt{\frac{m}{k} }

Gnerally the length of the compression(Here an assumption that the spring was compressed to the ground by the hammer is made) by the hammer is mathematically represented as

           b  =  l -l_e

=>         b  = 0.08 - 0.05 9

=>         b  = 0.021 \  m

Generally at equilibrium position the net force acting on the spring is  

            k *  b  -  mg  =  0

=>         k *  0.021   -   2 * 9.8  =  0

=>        k =  933 \  N/m

So

            A  =  0.30  *   \sqrt{\frac{2}{933} }

=>          A  =  0.014 \  m

8 0
3 years ago
Un soldado de 1.80 m de altura ha sido herido por una bala, cuya masa es de 100 g. Deciden colocar al soldado en una centrifugad
maks197457 [2]

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

3 0
3 years ago
Explain your answers to 9a and 9b in terms of Newton's laws of motion.
kogti [31]

Answer:i One way to solve the quadratic equation x2  = 9 is to subtract 9 from both sides to get one side equal to 0: x2  – 9 = 0. The expression on the left can be factored:

Explanation:

4 0
2 years ago
to start an avalanche on a mountain slope, an artillery shell is fired with an initial velocity of 290 m/s at 53.0° above the ho
kap26 [50]
So this is easy to calculate when you split the velocity into x and y components. The x component is going to equal cos(53) * 290 and the y component is going to equal sin(53)*290.

The x location therefore is 290*cos(53)*35 = 6108.4m

The y location needs to factor in the downwards acceleration of gravity too, which is 9.81m/s^2. We need the equation dist. = V initial*time + 0.5*acceleration*time^2.

This gives us d=290*sin(53)*35 + (0.5*-9.81*35^2)=2097.5m

So your (x,y) coordinates equals (6108.4, 2097.5)
5 0
3 years ago
Continuous sinusoidal perturbation Assume that the string is at rest and perfectly horizontal again, and we will restart the clo
Elena-2011 [213]

a) 3.14 \cdot 10^{-4} s

b) See plot attached

c) 10.0 m

d) 0.500 cm

Explanation:

a)

The position of the tip of the lever at time t is described by the equation:

y(t)=(0.500 cm) sin[(2.00\cdot 10^4 s^{-1})t] (1)

The generic equation that describes a wave is

y(t)=A sin (\frac{2\pi}{T} t) (2)

where

A is the amplitude of the wave

T is the period of the wave

t is the time

By comparing (1) and (2), we see that for the wave in this problem we have

\frac{2\pi}{T}=2.00\cdot 10^4 s^{-1}

Therefore, the period is

T=\frac{2\pi}{2.00\cdot 10^4}=3.14 \cdot 10^{-4} s

b)

The sketch of the profile of the wave until t = 4T is shown in attachment.

A wave is described by a sinusoidal function: in this problem, the wave is described by a sine, therefore at t = 0 the displacement is zero, y = 0.

The wave than periodically repeats itself every period. In this sketch, we draw the wave over 4 periods, so until t = 4T.

The maximum displacement of the wave is given by the value of y when sin(...)=1, and from eq(1), we see that this is equal to

y = 0.500 cm

So, this is the maximum displacement represented in the sketch.

c)

When standing waves are produced in a string, the ends of the string act as they are nodes (points with zero displacement): therefore, the wavelength of a wave in a string is equal to twice the length of the string itself:

\lambda=2L

where

\lambda is the wavelength of the wave

L is the length of the string

In this problem,

L = 5.00 m is the length of the string

Therefore, the wavelength is

\lambda =2(5.00)=10.0 m

d)

The amplitude of a wave is the magnitude of the maximum displacement of the wave, measured relative to the equilibrium position.

In this problem, we can easily infer the amplitude of this wave by looking at eq.(1).

y(t)=(0.500 cm) sin[(2.00\cdot 10^4 s^{-1})t]

And by comparing it with the general equation of a wave:

y(t)=A sin (\frac{2\pi}{T} t)

In fact, the maximum displacement occurs when the sine part is equal to 1, so when

sin(\frac{2\pi}{T}t)=1

which means that

y(t)=A

And therefore in this case,

y=0.500 cm

So, this is the displacement.

6 0
3 years ago
Other questions:
  • What is absolute zero? What is the temperature of absolute zero on the Kelvin and Celsius scales?
    9·2 answers
  • Determine the length of the tungsten filament in a 100 watt lightbulb given: (i) the resistivity of tungsten is 5.6 × 10−8 Ω · m
    10·1 answer
  • How is a scientific law different than a scientific theory ?
    10·1 answer
  • You are designing a hydraulic lift for a machine shop. The average mass of a car it needs to lift is about 1500 kg. You wish to
    6·1 answer
  • A truck moving at 7.0 meters per second accelerates to a speed of 15.0 meters per second within a time of 1.5 seconds. Calculate
    5·1 answer
  • the summer camps had field from the campus to fragrance hill. they traveled at an average speed of 65 km/h in the first 2 hours.
    6·1 answer
  • A 68-kg skydiver has a speed of 52 m/s at an altitude of 670 m above the
    5·1 answer
  • Diffusion and osmosis are forms of passive transport.<br><br> True<br> False
    11·2 answers
  • An object travels a distance d with acceleration a over a period of time t according to the equation: d = at² After 2.3 seconds
    8·1 answer
  • Which equation could be rearranged to calculate the frequency of a wave?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!