Answer:
500 N
Explanation:
Since the work done on the spring W = Fx where F = force applied and x = compression length = 0.170 m (since the spring will be compressed its full length when the force is applied)
Since W = 85.0 J and we need to find F,
F = W/x
= 85.0 J/0.170 m
= 500 N
So, the magnitude of force must you apply to hold the platform stationary at the final distance given above is 500 N.
Answer:
0.67m/s²
Explanation:
Given parameters:
Mass of toy = 1.2kg
Force applied = 0.8N
Unknown:
Acceleration = ?
Solution:
According to newton's second law of motion;
Force = mass x acceleration
Now,
Acceleration =
Acceleration =
= 0.67m/s²
Answer:
Speed will be equal to 1.40 m/sec
Explanation:
Mass of the rubber ball m = 5.24 kg = 0.00524 kg
Spring is compressed by 5.01 cm
So x = 5.01 cm = 0.0501 m
Spring constant k = 8.08 N/m
Frictional force f = 0.031 N
Distance moved by ball d = 15.8 cm = 0.158 m
Energy gained by spring

Energy lost due to friction

So remained energy to move the ball = 0.0101 - 0.0048 = 0.0052 J
This energy will be kinetic energy


v = 1.40 m/sec
228 - 224 = 4
there is 4g of solute in the solution.
The other 4 kg of mass may have departed the scene
of the fire, in the form of gases and smoke particles.