Answer:
Wait, that can happen? I'm sorry.
Explanation:
<span>haha I used to think biology was so hard, i find it quite easy now.
Okay, so basically Osmosis is the movement of water molecules from a higher concentration to a lower concentration. Diffusion is generally the movement of a gradient from higher concentration to an area of lower concentration. Osmosis applies to water only, whereas diffusion, you have many types such as Passive transport [ movement of molecules from high- low, NO CELLULAR ENERGY needed! ] then you have faciliated diffusion ( basically uses a channel protein to allow big substances to go through the membrane : NO ENERGY needed]
OSMOSIS, the important thing to remember is that water ALWAYS flow towards the region with the higher concentration of the solute (ex: Salt is solute, water is solvent) solute is the thing that is being dissolved. Solvent is the one doing the dissolving. Hope this helped!</span>
Answer:
The length of chain she is allowed is 1.169 ft
Explanation:
The given parameters are;
The linear density of the chain = 0.83 lb/ft
The weight limit of the chain she wants = 1.4 lb
The formula for linear density = Weight/length
Therefore, in order to keep the chain below 1.4 lb, we have;
Linear density = Weight/length
Therefore;
The maximum length she wants = Weight/(Linear density)
Which gives;
The maximum length she wants = 1.4 lb/(0.83 lb/ft) =1.169 ft
Therefore;
The length of chain she is allowed = 1.169 ft.
Answer:
Pemain A
Explanation:
Mengingat data berikut;
Kecepatan pemain A = 12 m/s
Kecepatan pemain B = 36 km/h
Untuk menentukan siapa pelari tercepat di antara dua pemain;
Pertama-tama, kita harus mengubah kecepatan menjadi satuan standar pengukuran yang sama.
Jadi, mari kita gunakan pengukuran umum meter per detik.
Konversi:
36 km/h = (36 * 1000)/(60 * 60)
36 km/h = 36000/3600
36 km/h = 10 m/s
Kecepatan pemain B = 10 m/s
Oleh karena itu, dibandingkan dengan kecepatan pemain A; pemain A lebih cepat.
Answer:
v_squid = - 2,286 m / s
Explanation:
This exercise can be solved using conservation of the moment, the system is made up of the squid plus the water inside, therefore the force to expel the water is an internal force and the moment is conserved.
Initial moment. Before expelling the water
p₀ = 0
the squid is at rest
Final moment. After expelling the water
= M V_squid + m v_water
p₀ = p_{f}
0 = M V_squid + m v_water
c_squid = -m v_water / M
The mass of the squid without water is
M = 9 -2 = 7 kg
let's calculate
v_squid = 2 8/7
v_squid = - 2,286 m / s
The negative sign indicates that the squid is moving in the opposite direction of the water