Liquids have more kinetic energy in their particles compared to solids. this allows the particles to move more freely, hence why they are fluids
Liquids diffuse from a region of high concentration to a region of low concentration, until equilibrium is reached
When heat is applied the particles gain more kinetic energy so they now have enough energy to overcome the bonds holding them in the liquid. this means they can evaporate off
Answer:
The pressure of the gas would be 3.06 atm
Explanation:
Amonton's law states that the pressure is directly proportional to the absolute temperature of a gas under constant volume. The equation is:
P1 / T1 = P2 / T2
<em>Where P1 is the initial pressure = 3.16atm</em>
<em>T1 is initial absolute temperature = 273.15 + 32.2°C = 305.35K</em>
<em>P2 is our incognite</em>
<em>And T2 is = 273.15 + 22.9°C = 296.05K</em>
<em />
Replacing:
3.16atm / 305.35K = P2 / 296.05K
3.06 atm = P2
<h3>The pressure of the gas would be 3.06 atm</h3>
The equation for energy of a photon is E=hv where v equals frequency and h equals the Planck constant (6.626X10^-34). So since you've been given frequency you can just plug in frequency to find the total energy in joules.
E=(3.55X10^17)(6.626X10^-34)
E=2.35223X10^-16
Not sure how many significant figures you needed. Hope this helped.
Answer:
Decarboxylation is a chemical reaction that removes a carboxyl group and releases carbon dioxide (CO2). Usually, decarboxylation refers to a reaction of carboxylic acids, removing a carbon atom from a carbon chain.
Explanation:
Please give me brainlist