The volume of a gas is the same as its CONTAINER.
Gases generally has no shape and no definite volume. When a gas is placed in a container, the gas usually takes the shape and the volume of the container, that is, the gas fills up all the available spaces in the container. Thus, the volume of a gas will always be the same as its container. This is in contrast with solids, which have definite shape and volume and liquids, which have definite volume but no fixed shape.
Answer: The correct answer is A. 11.5 atm. The temperature is held constant at 293 K, therefore, we can use Boyle's Law to determine the initial pressure. Boyle's Law states that there is an inverse relationship between pressure and volume of gases. Therefore, as volume increases, the pressure will decrease and vice versa.
Further Explanation:
Boyle's Law can be mathematically expressed as:

In this problem, we are given the values:
P(initial) = ?
V(initial) = 80 L
P (final) = 0.46 atm
V (final) = 2000 L
Plugging in these values into the equation:

The initial pressure was 11.5 atm. Since the volume increased or expanded, the space where the gas particles move is bigger, so the frequency of collisions with the wall of the container and with other particles are effectively decreased. This, therefore, decreases the pressure from 11.5 to 0.46 atm.
Learn More
- Learn about Charles' Law brainly.com/question/1421697
- Learn about Ideal Gas Law brainly.com/question/6534668
- Learn about Gay - Lusaac's Law brainly.com/question/1358307
Keywords: gas, Boyle's Law, Ideal Gas Law
Answer:
The final temperature was 612 °C
Explanation:
Charles's law relates the volume and temperature of a certain amount of ideal gas, maintained at a constant pressure, using a constant of direct proportionality. In this law, Charles says that at constant pressure, as the temperature increases, the volume of the gas increases and as the temperature decreases, the volume of the gas decreases. That is, Charles's law is a law that says that when the amount of gas and pressure are kept constant, the ratio between volume and temperature will always have the same value:

When you want to study two different states, an initial and a final one of a gas and evaluate the change in volume as a function of temperature or vice versa, you can use the expression:

In this case:
- V1= 5.76 L
- T1= 22 °C= 295 °K (Being 0°C=273°K)
- V2=17.28 L
- T2=?
Replacing:

Solving:

T2= 885 °K = 612 °C
<u><em>The final temperature was 612 °C</em></u>
The first ionisation energy of silicon is greater than that of phosphorus.