Answer:
The answer is below
Explanation:
The initial velocity = u = 82.5 km/h = 22.92 m/s, the final velocity = 32.5 km/h = 9.03 m/s, diameter = 91.55 cm = 0.9144 cm
radius (r) = diameter / 2 = 0.9144 / 2= 0.4572 m
a) Initial angular velocity (
) = u /r = 22.92 / 0.4572 = 50.13 rad/s, final velocity (ω) = v / r = 9.03 / 0.4592 = 19.67 rad / s
θ = 95 rev * 2πr = 95 * 2π * 0.4572= 272.9 rad
angular acceleration (α) is:

b)
c) θ = 95 rev * 2πr = 95 * 2π * 0.4572= 272.9 rad
a) When it stops, the final angular velocity is 0. Hence:

θ = 323 rad
Answer:
The net force acting on this object is 180.89 N.
Explanation:
Given that,
Mass = 3.00 kg
Coordinate of position of 
Coordinate of position of 
Time = 2.00 s
We need to calculate the acceleration

For x coordinates

On differentiate w.r.to t

On differentiate again w.r.to t

The acceleration in x axis at 2 sec

For y coordinates

On differentiate w.r.to t

On differentiate again w.r.to t

The acceleration in y axis at 2 sec

The acceleration is

We need to calculate the net force



The magnitude of the force


Hence, The net force acting on this object is 180.89 N.
Answer:
Thorium 227 (also known as Radioactinium)