Answer:
See below
Step-by-step explanation:
heat gained by metal + heat lost by water = 0
m₁C₁ΔT₁ + m₂C₂ΔT₂ = 0
C₁ = -(m₂C₂ΔT₂)/(m₁ΔT₁)
The factors determining C₁ are
- mass of water
- temperature change of water (T_f - Ti)
- mass of metal
- temperature change of metal (T_f - Ti)
Any factor that makes the numerator higher or the denominator lower than what you thought, will give a calculated C₁ that is too high (and vice versa).
The major sources of uncertainty are probably in determining the temperatures, especially the initial and final temperatures of the metal. However, you will have to decide what the principal factors were in your experiment.
For example, did the metal have a chance to cool during the transfer to the calorimeter? How easy was it to determine the equilibrium temperature, etc?
Factors Affecting the Calculation of Specific Heat Capacity
<u> Too Low </u> <u> Too high </u>
Water Water
Mass less than thought Mass more than thought
Ti lower Ti higher
T_f higher T_f lower
Metal Metal
Mass more than thought Mass less than thought
Ti higher Ti lower
Oceanic crust would be on top, being less dense and doesn't have as much water in it. Old oceanic crust is usually on the bottom, and filled with water. It is more dense.
The answer is 4.
Gases have low densities, because of the increased space between hight-energy particles.
Answer:
A
Explanation:
27 us the number of protons when we subtract 27 from 59 it will be 32 because a mass number is the sum of proton and neutron but tell u more on the comment