Answer:
London dispersion forces
Explanation:
There are different forces of attraction that helps to hold atoms or Molecules of a particular substance together. Some of the forces of attraction are ionic/ electrovalent bond, covalent bond, vander waals forces of attraction and so on.
Under the vander waals forces of attraction we have what is known as the London dispersion forces. This force of attraction is a very weak and it is commonly found in the atoms of noble gases.
The intermolecular force of attraction in which we are talking about that is london dispersion forces is formed as a result of the formation of non-polar dipoles which are not permanent.
J.J. Thomson's experiments with cathode ray tubes showed that all atoms contain tiny negatively charged subatomic particles or electrons. ... Rutherford's gold foil experiment showed that the atom is mostly empty space with a tiny, dense, positively-charged nucleus.
Mass of PH3= 6.086 g
<h3>Further explanation</h3>
Given
6.0 L of H2
Required
mass of PH3
Solution
Reaction
P4 + 6H2 → 4PH3
Assumed at STP ( 1 mol gas=22.4 L)
Mol of H2 for 6 L :
= 6 : 22.4 L
= 0.268
From the equation, mol PH3 :
= 4/6 x moles H2
= 4/6 x 0.268
= 0.179
Mass PH3 :
= 0.179 x 33,99758 g/mol
= 6.086 g