Answer:
Explanation:
For an object to move with constant velocity, the acceleration of the object must be zero:
.
As the net force equals acceleration multiplied by mass , this must mean:
.
So, the sum of the three forces must be zero:
,
this implies:
.
To obtain this sum, its easier to work in Cartesian representation.
First we need to define an Frame of reference. Lets put the x axis unit vector
pointing east, with the y axis unit vector
pointing south, so the positive angle is south of east. For this, we got for the first force:
,
as is pointing north, and for the second force:
,
as is pointing west.
Now, our third force will be:
![\vec{F}_3 = - 83.7 \ N \ (-\hat{j}) - 59.9 \ N \ (-\hat{i})](https://tex.z-dn.net/?f=%5Cvec%7BF%7D_3%20%20%3D%20-%2083.7%20%5C%20N%20%5C%20%28-%5Chat%7Bj%7D%29%20-%2059.9%20%5C%20N%20%5C%20%28-%5Chat%7Bi%7D%29)
![\vec{F}_3 = 83.7 \ N \ \hat{j} + 59.9 \ N \ \hat{i}](https://tex.z-dn.net/?f=%5Cvec%7BF%7D_3%20%20%3D%20%2083.7%20%5C%20N%20%5C%20%5Chat%7Bj%7D%20%20%2B%2059.9%20%5C%20N%20%5C%20%5Chat%7Bi%7D)
![\vec{F}_3 = (59.9 \ N , 83.7 \ N )](https://tex.z-dn.net/?f=%5Cvec%7BF%7D_3%20%20%3D%20%20%2859.9%20%5C%20N%20%2C%2083.7%20%5C%20N%20%29%20)
But, we need the magnitude and the direction.
To find the magnitude, we can use the Pythagorean theorem.
![|\vec{R}| = \sqrt{R_x^2 + R_y^2}](https://tex.z-dn.net/?f=%7C%5Cvec%7BR%7D%7C%20%3D%20%5Csqrt%7BR_x%5E2%20%2B%20R_y%5E2%7D)
![|\vec{F}_3| = \sqrt{(59.9 \ N)^2 + (83.7 \ N)^2}](https://tex.z-dn.net/?f=%7C%5Cvec%7BF%7D_3%7C%20%3D%20%5Csqrt%7B%2859.9%20%5C%20N%29%5E2%20%2B%20%2883.7%20%5C%20N%29%5E2%7D)
![|\vec{F}_3| = 102.92 \ N](https://tex.z-dn.net/?f=%7C%5Cvec%7BF%7D_3%7C%20%3D%20102.92%20%5C%20N)
this is the magnitude.
To find the direction, we can use:
![\theta = arctan(\frac{F_{3_y}}{F_{3_x}})](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20arctan%28%5Cfrac%7BF_%7B3_y%7D%7D%7BF_%7B3_x%7D%7D%29)
![\theta = arctan(\frac{83.7 \ N }{ 59.9 \ N })](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20arctan%28%5Cfrac%7B83.7%20%5C%20N%20%7D%7B%2059.9%20%5C%20N%20%7D%29)
![\theta = 57 \° 24 ' 48''](https://tex.z-dn.net/?f=%5Ctheta%20%3D%2057%20%5C%C2%B0%2024%20%27%2048%27%27)
and this is the angle south of east.