1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
STatiana [176]
3 years ago
5

Three forces act on a moving object. One force has a magnitude of 83.7 N and is directed due north. Another has a magnitude of 5

9.5 N and is directed due west. What must be (a) the magnitude and (b) the direction of the third force, such that the object continues to move with a constant velocity? Express your answer as a positive angle south of east.
Physics
1 answer:
LekaFEV [45]3 years ago
7 0

Answer:

  • |\vec{F}_3| = 102.92 \ N
  • \theta = 57 \° 24 ' 48''

Explanation:

For an object to move with constant velocity, the acceleration of the object must be zero:

\vec{a} = \vec{0}.

As the net force equals acceleration multiplied by mass , this must mean:

\vec{F}_{net} = m \vec{a} = m * \vec{0} = \vec{0}.

So, the sum of the three forces must be zero:

\vec{F}_1 + \vec{F}_2 + \vec{F}_3 = \vec{0},

this implies:

\vec{F}_3  = - \vec{F}_1 - \vec{F}_2.

To obtain this sum, its easier to work in Cartesian representation.

First we need to define an Frame of reference. Lets put the x axis unit vector \hat{i} pointing east,  with the y axis unit vector \hat{j} pointing south, so the positive angle is south of east. For this, we got for the first force:

\vec{F}_1 = 83.7 \ N \ (-\hat{j}),

as is pointing north, and for the second force:

\vec{F}_2 = 59.9 \ N \ (-\hat{i}),

as is pointing west.

Now, our third force will be:

\vec{F}_3  = - 83.7 \ N \ (-\hat{j}) - 59.9 \ N \ (-\hat{i})

\vec{F}_3  =  83.7 \ N \ \hat{j}  + 59.9 \ N \ \hat{i}

\vec{F}_3  =  (59.9 \ N , 83.7 \ N )

But, we need the magnitude and the direction.

To find the magnitude, we can use the Pythagorean theorem.

|\vec{R}| = \sqrt{R_x^2 + R_y^2}

|\vec{F}_3| = \sqrt{(59.9 \ N)^2 + (83.7 \ N)^2}

|\vec{F}_3| = 102.92 \ N

this is the magnitude.

To find the direction, we can use:

\theta = arctan(\frac{F_{3_y}}{F_{3_x}})

\theta = arctan(\frac{83.7 \ N }{ 59.9 \ N })

\theta = 57 \° 24 ' 48''

and this is the angle south of east.

You might be interested in
PLEASE HELP!!!!!!! MT TIME FOR MY TEST IS ALMOST OVER!!!
pav-90 [236]

Answer:

50 N

Explanation:

Let the natural length of the spring = L

so

100 = k(40 - L)       (1)

200 = k(60 - L)       (2)

(2)/(1):   2 = (60 - L)/(40 - L)

60 - L = 2(40 - L)

60 - L = 80 - 2L

2L - L = 80 - 60

L = 20

Sub it into (1):

100 = k(40 - 20) = 20k

k = 100/20 = 5 N/in

Now

X = k(30 - L) = 5(30 - 20) = 50 N

3 0
2 years ago
Two power lines run parallel for a distance of 222 m and are separated by a distance of 40.0 cm. if the current in each of the t
earnstyle [38]
1) Magnitude of the force:

The magnetic field generated by a current-carrying wire is
B= \frac{\mu_0I}{2 \pi r}
where
\mu_0 is the vacuum permeability
I is the current in the wire
r is the distance at which the field is calculated

Using I=135 A, the current flowing in each wire, we can calculate the magnetic field generated by each wire at distance 
r=40.0 cm=0.40 m, 
which is the distance at which the other wire is located:
B= \frac{\mu_0 I}{2 \pi r}= \frac{(4 \pi \cdot 10^{-7} N/A^2)(135 A) }{2 \pi (0.40 m)}=6.75 \cdot 10^{-5} T

Then we can calculate the magnitude of the force exerted on each wire by this magnetic field, which is given by:
F=ILB=(135 A)(222 m)(6.75 \cdot 10^{-5}T)=2.03 N

2) direction of the force: 
The two currents run in opposite direction: this means that the force between them is repulsive. This can be determined by using the right hand rule. Let's apply it to one of the two wires, assuming they are in the horizontal plane, and assuming that the current in the wire on the right is directed northwards:
- the magnetic field produced by the wire on the left at the location of the wire on the right is directed upward (the thumb of the right hand is directed as the current, due south, and the other fingers give the direction of the magnetic field, upward)

Now let's apply the right-hand rule to the wire on the right:
- index finger: current --> northward
- middle finger: magnetic field --> upward
- thumb: force --> due east --> so the force is repulsive

A similar procedure can be used on the wire on the left, finding that the force exerted on it is directed westwards, so the force between the two wires is repulsive.
6 0
3 years ago
With your hand parallel to the floor and your palm upright, you lower a 3-kg book downward. If the force exerted on the book by
lara31 [8.8K]

According to the net force, the acceleration of the book is 16.47 m/s².

We need to know about force to solve this problem. According to second Newton's Law, the force applied to an object will be proportional to mass and acceleration. Hence, it can be written as

∑F = m . a

where F is force, m is mass and a is acceleration

From the question above, we know that

m = 3 kg

g = 9.8 m/s²

F1 = 20 N

Find the net force

∑F = F1 + W

∑F = 20 + m . g

∑F = 20 + 3 . 9.8

∑F = 20 + 29.4

∑F = 49.4 N

Find the acceleration

∑F = m . a

49.4 = 3 . a

a = 16.47 m/s²

Find more on force at: brainly.com/question/25239010

#SPJ4

7 0
1 year ago
How can I skip class:
Dahasolnce [82]

Answer:

c gl

Explanation:

::::::::::::::::::::::::

3 0
3 years ago
Read 2 more answers
A man can jog 10 miles in 90 minutes. What’s his speed in mph?
Yuki888 [10]

Answer:

hi there!

the correct answer to this question is: 6.67 mph

Explanation:

you convert minutes to hours

10 miles * 60 mins / 90 mins

7 0
3 years ago
Other questions:
  • A 15.4 kg block is dragged over a rough, horizontal surface by a constant force of 182 N acting at an angle of 24◦ above the hor
    5·1 answer
  • se the mass and volume data to calculate the density of mercury to the nearest tenth. Mass = 57 g Volume = 4.2 mL The density of
    14·2 answers
  • Which of these is not part of the solar system? black holes, planets, stars, astroids
    6·2 answers
  • The student soon loses his balance and falls backwards off the board at a velocity of 1.0 m/s. Assuming momentum is conserved in
    5·1 answer
  • 12. What unit is used to describe the frequency of a wave?<br>​
    5·1 answer
  • A 620 nm light falls on a photoelectric surface and electrons with the maximum kinetic energy of 0.14 eV are emitted. (a) Determ
    10·1 answer
  • Rocket can propel itself in a vacuum. True or false
    11·1 answer
  • Scientists are able to use body waves to determine what makes up the different layers of the Earth's interior. What characterist
    12·1 answer
  • Which part of the curve shows:
    7·2 answers
  • A trolley is moving at constant speed in a friction compensated track. Some plasticine is dropped on the trolley and sticks on i
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!