The correct answers about rusting, air pollution and products of water with rock are:
Option A. oxidation
Option D. Pollutants mix with air and water to make acid rain.
Option B. clay minerals and calcium carbonate
<h3>What is rusting?</h3>
Rusting is the process by which a metal especially reacts with oxygen in the atmosphere and water vapor to form a hydrated oxide of the metal known as hydrated iron (iii) oxide. This is known as rust.
The process is an oxidation process; option A.
<h3>How does air pollution impact chemical weathering?</h3>
Air pollution is the presence of substances in air known as pollutants which makes the air impure.
Air pollution impact chemical weathering as the pollutants mix with air and water to make acid rain which weathers rocks; option D.
<h3>What products are produced when water reacts with sodium in rocks?</h3>
The reaction of water with sodium in rocks result in the formation of clay minerals and calcium carbonate also as limestone, marble or chalk; option B.
In conclusion, the presence of pollutants in air results in acid rain and hence rock weathering.
Learn more rock weathering at: brainly.com/question/2341950
#SPJ1
Answer:o It is important to realise that mixing will be small unless there are electrons in the 4a1 LUMO, this is why NH3 is pyramidal while BH3 is planar! ... This mixing is very strong and stabilises the 3a1 MO substantially and hence NH3 is trigonal pyramidal and not planar.
Explanation:
The answer is yes I believe so.
<h3><u>Full Question:</u></h3>
The following compound has been found effective in treating pain and inflammation (J. Med. Chem. 2007, 4222). Which sequence correctly ranks each carbonyl group in order of increasing reactivity toward nucleophilic addition?
A) 1 < 2 < 3
B) 2 < 3 < 1
C) 3 < 1 < 2
D) 1 < 3 < 2
<h3><u>Answer: </u></h3>
The rate of nucleophilic attack of carbonyl compounds is 2<3 <1.
Option B
<h3><u>Explanation. </u></h3>
Nucleophilic attack is explained as the attack of an electron rich radical to a carbonyl compound like aldehyde or a ketone. A nucleophile has a high electron density, so it searches for a electropositive atom where it can donate a portion of its electron density and become stable.
A carbonyl compound is a
hybridized carbon atom with a double bonded oxygen atom in it. The oxygen atom pulls a huge portion of electron density from carbon being very electropositive.
In a ketone, there are two factors that make it less likely to undergo a nucleophilic attack than aldehyde. Firstly, the steric hindrance of two carbon groups being attached with the carbonyl carbon makes it harder for the nucleophile to approach. Secondly, the electron push by the carbon groups attached makes the carbonyl carbon a bit less electropositive than the aldehyde one. So aldehydes are more reactive towards a nucleophilic addition reaction.