Answer:
1. Ions are either negatively or positively charged species in which the number of electrons and protons are not equal.
2. The chemical bond that arises due to the sharing of electrons is termed a covalent bond.
3. The positively charged ions are called cations, which comprise more protons than electrons.
4. An example of a polyatomic anion is the hydroxide anion.
5. The system of assigning an unambiguous name to a compound is called nomenclature.
Explanation:
As it is known that molarity is the number of moles present in a liter of solution.
Mathematically, Molarity = 
As it is given that molarity is 0.10 M and volume is 10.0 ml. As 1 ml equals 0.001 L. Therefore, 10.0 ml will also be equal to 0.01 L.
Hence, putting these values into the above formula as follows.
Molarity = 
0.10 M = 
no. of moles = 0.001 mol
As molar mass of KCN is equal to 65.12 g/mol. Therefore, calculate the mass of KCN as follows.
No. of moles = 
0.001 mol = 
mass = 0.06152 g
Thus, we can conclude that 0.06152 grams of KCN are in 10.0 ml of a 0.10 M solution.
Answer:
The intermolecular forces between CO3^2- and H2O molecules are;
1) London dispersion forces
2) ion-dipole interaction
3) hydrogen bonding
Explanation:
Intermolecular forces are forces of attraction that exits between molecules. These forces are weaker in comparison to the intramolecular forces, such as the covalent or ionic bonds between atoms in a molecule.
Considering CO3^2- and H2O, we must remember that hydrogen bonds occur whenever hydrogen is bonded to a highly electronegative atom such as oxygen. The carbonate ion is a hydrogen bond acceptor.
Also, the London dispersion forces are present in all molecules and is the first intermolecular interaction in molecular substance. Lastly, ion-dipole interactions exists between water and the carbonate ion.
Answer:
true
covalent bonds are between non metals and nonmetals. and they are sharing electrons.