Answer:
Explanation:
A) Formal charges represent an actual separation of charges.(FALSE)
(B) ΔHo rxn can be estimated from the bond enthalpies of reactants and products.(TRUE)
C)All second-period elements obey the octet rule in their compounds(FALSE).
(D)The resonance structures of a molecule can be separated from one another in the laboratory.(FALSE)
Bond enthalpy which is also reffered to as bond energy is the amount of energy that is required to break one mole of a bond.
taking the single bond between Oxygen and Hydrogen into considerationthe bond energy between their single bond is 463 kJ/mol.
formal charge is used for the comparison of the number of electrons present around an atom in a particular molecule with the number of electrons present around a neutral
Answer:
10043.225 J
Explanation:
We'll begin by calculating the amount of heat needed to change ice to water since water at 0°C is ice. This is illustrated below:
Mass (m) = 15.5g
Latent heat of fussion of water (L) = 334J/g
Heat (Q1) =..?
Q1 = mL
Q1 = 15.5 x 334
Q1 = 5177 J
Next, we shall calculate the amount of heat needed to raise the temperature of water from 0°C to 75°C.
This is illustrated below:
Mass = 15.5g
Initial temperature (T1) = 0°C
Final temperature (T2) = 75°C
Change in temperature (ΔT) = T2 – T1 = 75 – 0 = 75°C
Specific heat capacity (C) of water = 4.186J/g°C
Heat (Q2) =?
Q2 = MCΔT
Q2 = 15.5 x 4.186 x 75
Q2 = 4866.225 J
The overall heat energy needed is given by:
QT = Q1 + Q2
QT = 5177 + 4866.225
QT = 10043.225 J
Therefore, the amount of energy required is 10043.225 J
Since we are only asked for the number of moles, we don't need the information of density. The concentration is expressed in terms of 0.135 M AgCl or 0.135 moles of AgCl per liter solution. The solution is as follows:
Moles AgCl = Molarity * Volume
Moles AgCl = 0.135 mol/L * 244 mL * 1 L/1000 mL
<em>Moles AgCl = 0.03294 mol </em>
To get mL from mass just devide 1000g with 10.5 to get 95.23mL