Lower
Melting points of molecular solids are lower than melting points of ionic compounds
First, we calculate the mass of the sample:
mass = density x volume
mass = 8.48 x 112.5
mass = 954 grams
Now, we will calculate the mass of each component using its percentage mass, then divide it by its atomic mass to find the moles and finally multiply the number of moles by the number of particles in a mole, that is, 6.02 x 10²³.
Zinc mass = 0.37 x 954
Zinc mass = 352.98 g
Zinc moles = 352.98 / 65
Zinc moles = 5.43
Zinc atoms = 5.43 x 6.02 x 10²³
Zinc atoms = 3.27 x 10²⁴
Copper mass = 0.63 x 954
Copper mass = 601.02 g
Copper moles = 601.02 / 64
Copper moles = 9.39
Copper atoms = 9.39 x 6.02 x 10²³
Copper atoms = 5.56 x 10²⁴
Answer:
The most common example is the molar volume of a gas at STP (Standard Temperature and Pressure), which is equal to 22.4 L for 1 mole of any ideal gas at a temperature equal to 273.15 K and a pressure equal to 1.00 atm.If an ideal gas at a constant temperature is initially at a pressure of 3.8 atm and is then allowed to expand to a volume of 5.6 L and a pressure of 2.1 - 18914… ... of 5.6 L and a pressure of 2.1 atm, what is the initial volume of the gas? ... An ideal gas is at a pressure of 1.4 atm and has a volume of 3 L.
Explanation:
I hope I help :)
In 1869 Russian chemist DIMITRI MENDELEEV started the development of the periodic table,arranging chemical elements by atomic mass. He predicted the discovery of other elements and left spaces open in his periodic table for them. HOPE THIS HELPSS HAVE A GREAT DAY <333
Answer:
The correct answer is
2. Water
Explanation:
The specific heat capacity is the amount of heat required to raise the temperature of a unit mass of a substance by one degree. It is connected to the capacity of the substance to retain heat as well as the rate at which it will cool down or heat up when exposed to a specific amount of heat loss or heat supplied. A substance with a low heat capacity such as iron will cool down or heat up more quicker than a substance with a high heat capacity such as water.
From the list of substances water has the highest heat capacity, (4.18 J/g) as such it will retain heat for the longest period of time.