1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mrs_skeptik [129]
3 years ago
12

Is this correct? (the table)

Physics
1 answer:
Aneli [31]3 years ago
3 0
I’m pretty sure b isn’t right because it’s counting towards multiple strands of DNA.
You might be interested in
A bullet with a mass of 0.02 kg is fired horizontally into a block of wood hanging on a string. The bullet sricks in the wood an
djyliett [7]

Answer:

u= 20.09 m/s

Explanation:

Given that

m = 0.02 kg

M= 2 kg

h= 0.2 m

Lets take initial speed of bullet = u m/s

The final speed of the system will be zero.

From energy conservation

1/2 m u²+ 0 = 0+ (m+M) g h

m u²=2 (m+M) g h

By putting the values

0.02 x u² = 2 (0.02+2) x 10 x 0.2       ( take g=10 m/s²)

u= 20.09 m/s

7 0
3 years ago
In a large centrifuge used for training pilots and astronauts, a small chamber is fixed at the end of a rigid arm that rotates i
RSB [31]

a) The length of the arm of the centrifuge is 10.9 m

b) The angular acceleration is 2.7 rad/s^2

Explanation:

a)

In a uniform circular motion, the centripetal acceleration is given by

a_c=\omega^2 r

where:

\omega is the angular speed of the circular motion

r is the radius of the circle

For the centrifuge in this problem, we have:

\omega=1.7 rad/s is the angular speed

The centripetal acceleration is 3.2 times the acceleration due to gravity (g=9.8 m/s^2), so:

a_c=3.2 g = 3.2(9.8)=31.4 m/s^2

Therefore, we can re-arrange the previous equation to find r, the radius of the circle (which corresponds to the length of the arm of the centrifuge):

r=\frac{a_c}{\omega^2}=\frac{31.4}{1.7^2}=10.9 m

b)

In the second part of the exercise, the centrifuge speeds up from an initial angular speed of 0 to a final angular speed of 1.7 rad/s. The total acceleration experienced at the final moment is

a=4.4 g

So, 4.4 times the acceleration due to gravity.

The total acceleration is the resultant of the centripetal acceleration (a_c) and the tangential acceleration (a_t):

a=\sqrt{a_c^2+a_t^2}

We know that:

a = 4.4g

a_c = 3.2 g

So, we can find the tangential acceleration:

a_t = \sqrt{a^2-a_c^2}=\sqrt{(4.4g)^2-(3.2g)^2}=29.6 m/s^2

The angular acceleration is related to the tangential acceleration by

\alpha = \frac{a_t}{r}

where r = 10.9 m is the length of the centrifuge. Substituting,

\alpha = \frac{29.6}{10.9}=2.7 rad/s^2

Learn more about centripetal and angular acceleration here:

brainly.com/question/2562955

brainly.com/question/9575487

brainly.com/question/9329700

brainly.com/question/2506028

#LearnwithBrainly

8 0
3 years ago
Math Focus
zhenek [66]

Answer: 4.

Explanation:

Use formula v = d / t, where v = speed, d = distance and t = time.

v = 10 / 2.5

v = 4.

3 0
3 years ago
On a frictionless horizontal air table, puck A (with mass 0.254 kg ) is moving toward puck B (with mass 0.367 kg ), which is ini
irinina [24]

Answer:

v_a=0.8176 m/s

\Delta K=0.07969 J - 0.0849 J = -0.00521 J

Explanation:

According to the law of conservation of linear momentum, the total momentum of both pucks won't be changed regardless of their interaction if no external forces are acting on the system.

Being m_a and m_b the masses of pucks a and b respectively, the initial momentum of the system is

M_1=m_av_a+m_bv_b

Since b is initially at rest

M_1=m_av_a

After the collision and being v'_a and v'_b the respective velocities, the total momentum is

M_2=m_av'_a+m_bv'_b

Both momentums are equal, thus

m_av_a=m_av'_a+m_bv'_b

Solving for v_a

v_a=\frac{m_av'_a+m_bv'_b}{m_a}

v_a=\frac{0.254Kg\times (-0.123 m/s)+0.367Kg (0.651m/s)}{0.254Kg}

v_a=0.8176 m/s

The initial kinetic energy can be found as (provided puck b is at rest)

K_1=\frac{1}{2}m_av_a^2

K_1=\frac{1}{2}(0.254Kg) (0.8176m/s)^2=0.0849 J

The final kinetic energy is

K_2=\frac{1}{2}m_av_a'^2+\frac{1}{2}m_bv_b'^2

K_2=\frac{1}{2}0.254Kg (-0.123m/s)^2+\frac{1}{2}0.367Kg (0.651m/s)^2=0.07969 J

The change of kinetic energy is

\Delta K=0.07969 J - 0.0849 J = -0.00521 J

3 0
3 years ago
Question about generators and electrical currents. Please, no absurd answers! Thank you
Kamila [148]
The first answer should be correct if not then the second one
3 0
3 years ago
Read 2 more answers
Other questions:
  • Will you still get tan with sunscreen on
    10·1 answer
  • What types of properties does light have
    5·2 answers
  • Determine o que se pede e diga qual transformaçao P=25 atm T=600 P=75atm T=?
    5·1 answer
  • A car that travels from point A to point B in four hours, and then from point B back to point A in six hours. The road between p
    8·2 answers
  • ANALOGY, Metal ions: buoys, as electrons: _____.
    15·2 answers
  • Which of the following is true about scientific knowledge?
    7·1 answer
  • WILL GIVE THAT CROWN THINGY!
    13·2 answers
  • If a battery of 9 volts is connected across a resistor of 1000 ohm, what will be the value of current flowing through it?
    8·1 answer
  • A 58-kg boy swings a baseball bat, which causes a 0.140-kg baseball to move towards 3rd base with a velocity of 38.0 m/s. What i
    12·1 answer
  • According to current scientific understanding, the idea that the milky way galaxy might be home to a civilization millions of ye
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!