Answer:
diffraction
Explanation:
diffraction occurs when light passes sharp edges or goes through narrow slits the rays are deflected and produce fringes of light and dark bands
Answer: Option (b) is the correct answer.
Explanation:
The force of gravity acting on an object helps in determining the weight of an object. But a place where there will be no gravity or have zero gravitational pull then it means the person will be weightless.
For example, force of gravity on moon is zero which means any object or person on moon will be weightless.
On the other hand, when a child is in the air as she plays on a trampoline then it means gravitational pull form the earth is acting on it. So, it will definitely has some weight.
Similarly, a scuba diver exploring a deep-sea wreck is under the ground where there will be force of gravity. Hence, it will also have some weight.
Thus, we can conclude that an astronaut on the Moon is the person who is weightless.
W=20 e(-kt)
A. Rearranging gives k= -(ln(w/20)/t
Substituting w= 10 and solving gives k=0.014
B. Using W=20e(-kt). After 0 hours, W=20. After 24 hours, W=14.29g. After 1 week (24x7=168h) W=1.9g
C. Rearranging gives t=-(ln(10/20)/k. Substituting w=1 and solving gives t=214 hours.
D. Differentiating gives dW/ dt = -20ke(-kt). Solving for t=100 gives dW/dt = 0.07g/h. Solving for t=1000 gives 0.0000002g/h
E. dW/dt = -20ke(-kt). But W=20e(-kt) so dW/dt = -kW
Answer:
c)the gravitational forces of people is so small it is overshadowed by that of earth.
Explanation:
The gravitational force between two objects is given by:
where
G is the gravitational constant
m1 and m2 are the masses of the two objects
r is the distance between the two objects
From the formula, we see that the gravitational force depends on the masses of the objects: since the mass of the Earth ( is much much larger than the average mass of one person (80-100 kg), then the gravitational force exerted by the Earth on a person is also much much larger than the gravitational force between two people.