1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wlad13 [49]
2 years ago
5

As a bicycle pump inflates a tyre, it pressure rises from 30 kPa to 40 kPa at constant temperature of 30 °C. By assuming the air

acts as an ideal gas, calculate the work done per mol of the air.
A. -80.35 J
B. 80.35 J
C. -811.93 J
D. 811.93 J

(please show calculation)
can use this formula W=nRT ln(p1/p2)​
Physics
1 answer:
nignag [31]2 years ago
8 0

Answer:

B.-80.35 J

i dont know the calculation

You might be interested in
Help!!!, combination circuits, Physics
Kaylis [27]

Current and voltage on each resistor:

I_1 = 3.98 A, V_1 = 3.98 V

I_2=0.015 A, V_2 = 0.075 V

I_3 = 0.4 A, V_3 = 0.4 V

I_4 = 0.385 A, V_4 = 0.77 V

I_5 = 0.585 A, V_5 = 1.17 V

I_6 = 3.01 A, V_6 = 6.02 V

I_7 = 0.97 A, V_7 = 4.85 V

Explanation:

In order to solve the circuit, we first have to find the equivalent resistance of the whole circuit, then the total current, and then we can proceed finding the current and the voltage for each resistor.

We start by calculating the equivalent resistance of resistors 2 and 3, which are in parallel:

R_{23}=\frac{R_2R_3}{R_2+R_3}=\frac{(5)(1)}{5+1}=0.833\Omega

This resistor is in series with resistor 4, so:

R_{234}=R_{23}+R_4=0.833+2.0=2.833\Omega

This resistor is in parallel with resistor 5, therefore:

R_{2345}=\frac{R_{234}R_5}{R_{234}+R_5}=\frac{(2.833)(2.0)}{2.833+2.0}=1.172\Omega

This resistor is in series with resistor 7, so:

R_{23457}=R_{2345}+R_7=1.172+5.0=6.172\Omega

This resistor is in parallel with resistor 6, so:

R_{234567}=\frac{R_{23457}R_6}{R_{23457}+R_6}=\frac{(6.172)(2.0)}{6.172+2.0}=1.510\Omega

Finally, this combination is in series with resistor 1:

R_{eq}=R_1+R_{234567}=1.0+1.510=2.510\Omega

We finally found the equivalent resistance of the circuit. Now we can find the total current in the circuit, which is also the current flowing through resistor 1:

I_1=\frac{V}{R_{eq}}=\frac{10}{2.510}=3.98 A

And we can also find the potential difference across resistor 1:

V_1=I_1 R_1=(3.98)(1.0)=3.98 V

This means that the voltage across resistor 6 is

V_6=V-V_1=10-3.98=6.02 V

And so, the current on resistor 6 is

I_6=\frac{V_6}{R_6}=\frac{6.02}{2.0}=3.01 A

The current flowing in the whole part of the circuit containing resistors 2,3,4,5,7, and therefore through resistor 7, is

I_7=I-I_6=3.98-3.01=0.97 A

And so the voltage across resistor 7 is

V_7=I_7 R_7=(0.97)(5.0)=4.85 V

The voltage across resistor 5 is

V_5 = V_6 - V_7 = 6.02 - 4.85 =1.17 V

And so the current is

I_5 = \frac{V_5}{R_5}=\frac{1.17}{2.0}=0.585 A

The current through resistor 4 is

I_4 = I_7 - I_5 = 0.97-0.585 = 0.385 A

And therefore its voltage is

V_4=I_4 R_4 = (0.385)(2.0)=0.77 V

So, the voltage through resistor 3 is

V_3=V_5-V_4=1.17-0.77=0.4 V

And the current is

I_3=\frac{V_3}{R_3}=\frac{0.4}{1.0}=0.4 A

Finally, the current through resistor 2 is

I_2=I_4-I_3=0.5-0.385=0.015 A

And so its voltage is

V_2=I_2R_2=(0.015)(5.0)=0.075 V

Learn more about current and voltage:

brainly.com/question/4438943

brainly.com/question/10597501

brainly.com/question/12246020

#LearnwithBrainly

4 0
3 years ago
A ball is thrown up into the air with an initial velocity of 18 m/s. A) How high does the ball go? B) Calculate the time needed
kaheart [24]

Answer:

B) t = 1.83 [s]

A) y = 16.51 [m]

Explanation:

To solve this problem we must use the following equation of kinematics.

v_{f} =v_{o} -g*t

where:

Vf = final velocity = 0

Vo = initial velocity = 18 [m/s]

g = gravity acceleration = 9.81 [m/s²]

t = time [s]

Note: the negative sign in the above equation means that the acceleration of gravity is acting in the opposite direction to the motion.

A) The maximum height is reached when the final velocity of the ball is zero.

0 = 18 - (9.81*t)

9.81*t = 18

t = 18/9.81

t = 1.83 [s], we found the answer for B.

Now using the following equation.

y = y_{o} + v_{o}*t - 0.5*g*t^{2}\\

where:

y = elevation [m]

Yo = initial elevation = 0

y = 18*(1.83) - 0.5*9.81*(1.83)²

y = 16.51 [m]

7 0
3 years ago
If two charged objects in a laboratory are brought to a distance of 0.22 meters away from each other. What is
zysi [14]

Answer:

q_2=2.47\times 10^{-4}\ C

Explanation:

The charge on one object, q_1=9.9\times 10^{-5}\ C

The distance between the charges, r = 0.22 m

The force between the charges, F = 4,550 N

Let q₂ is the charge on the other sphere. The electrostatic force between two charges is given by the formula as follows :

F=\dfrac{kq_1q_2}{r^2}\\\\q_2=\dfrac{Fr^2}{kq_1}\\\\q_2=\dfrac{4550\times (0.22) ^2}{9\times 10^9\times 9.9\times 10^{-5}}\\\\q_2=2.47\times 10^{-4}\ C

So, the charge on the other sphere is 2.47\times 10^{-4}\ C.

7 0
3 years ago
a circular cylinder and isused to maintain a water depth of 4 m. That is, when the water depth exceeds 4 m, thegate opens slight
stiv31 [10]

Answer:

  W / A = 39200 kg / m²

Explanation:

For this problem let's use the equilibrium equation of / newton

           F = W

Where F is the force of the door and W the weight of water

         W = mg

We use the concept of density

        ρ = m / V

        m = ρ V

The volume of the water column is

          V = A h

We replace

         W = ρ A h g

On the other side the cylinder cover has a pressure

          P = F / A

          F = P A

We match the two equations

       P A = ρ A h g

        P = ρ g h

        P = 39200 Pa

The weight of the water column is

       W  = 1000 9.8 4 A

       W / A = 39200 kg / m²

3 0
3 years ago
A student attaches a block of mass M to a vertical spring so that the block-spring system will oscillate if the block-spring sys
Vlada [557]
WAAAAAAAAAAAAAAAAAAAAAAAAARRRRR
7 0
3 years ago
Other questions:
  • Two cars travel westward along a straight highway, one at a constant velocity of 85 km/h, and the other at a constant velocity o
    9·1 answer
  • A second-class lever will always multiply distance.<br> a. true<br> b. false
    11·1 answer
  • 4. Johnny exerts a 3.55 N rightward force on a 0.200-kg box to accelerate it across a low-friction track. If the total resistanc
    15·1 answer
  • All of the following are electromagnetic radiation except
    13·2 answers
  • A scientist who studies teenage behavior was interested in determining if teenagers spend more time playing computer games then
    11·1 answer
  • A particular X-ray photon has initial energy of 60 keV when it enters the body. This photon transmits through 30 cm of soft tiss
    13·1 answer
  • Effect of impurities and temperature to surface tension​
    13·1 answer
  • Convert the unit of 0.00023 kilograms into grams. (Answer in scientific notation)
    8·2 answers
  • 1.
    14·2 answers
  • A steel rope is used to lift a 26 kg slab of concrete from the ground to a height of 20 m. Assume that the rope moves the concre
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!