1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wlad13 [49]
2 years ago
5

As a bicycle pump inflates a tyre, it pressure rises from 30 kPa to 40 kPa at constant temperature of 30 °C. By assuming the air

acts as an ideal gas, calculate the work done per mol of the air.
A. -80.35 J
B. 80.35 J
C. -811.93 J
D. 811.93 J

(please show calculation)
can use this formula W=nRT ln(p1/p2)​
Physics
1 answer:
nignag [31]2 years ago
8 0

Answer:

B.-80.35 J

i dont know the calculation

You might be interested in
Q4: Two fixed charges, 1 c and -3 C are
White raven [17]

Answer:

B

Explanation:

Is the equilibrium stable or unstable for the third charge

5 0
2 years ago
Aaron's normal response time to apply the car brakes is 0.7 seconds. Aaron's response time doubles when he is tired. How far wil
Likurg_2 [28]

Aaron's car is moving at speed of 30 m/s

His reaction time is given as 0.7 s

but when he is tired the reaction time is doubled

Now we need to find the distance covered by his car when he is tired during the time when he react to apply brakes

So here since during this time speed is given as constant so we can say that distance covered can be product of speed and time

So here we can use

d = v*t

d = 30 * 1.4

d = 42 m

So the car will move to 42 m during the time when he apply brakes

3 0
3 years ago
A billiards ball B rests on a horizontal surface and is struck by another billiards ball A of the same mass m = 0.2 kg. Ball A i
SOVA2 [1]

Answer:

v1 = 15.90 m/s

v2 = 8.46 m/s

mechanical energy before collision = 32.4 J

mechanical energy after collision = 32.433 J

Explanation:

given data

mass m = 0.2 kg

speed = 18 m/s

angle =  28°

to find out

final velocity and  mechanical energy both before and after the collision

solution

we know that conservation of momentum remain same so in x direction

mv = mv1 cosθ + mv2cosθ

put here value

0.2(18) = 0.2 v1 cos(28) + 0.2 v2 cos(90-28)

3.6 =  0.1765 V1 + 0.09389 v2    ................1

and

in y axis

mv = mv1 sinθ - mv2sinθ

0 = 0.2 v1 sin28 - 0.2 v2 sin(90-28)

0 = 0.09389 v1 - 0.1768 v2   .......................2

from equation 1 and 2

v1 = 15.90 m/s

v2 = 8.46 m/s

so

mechanical energy  before collision = 1/2 mv1² + 1/2 mv2²

mechanical energy before collision = 1/2 (0.2)(18)² + 0

mechanical energy before collision = 32.4 J

and

mechanical energy after collision = 1/2 (0.2)(15.90)² + 1/2 (0.2)(8.46)²

mechanical energy after collision = 32.433 J

7 0
2 years ago
A man is standing on the edge of a 20.0 m high cliff. He throws a rock horizontally with an initial velocity of 10.0 m/s.
kherson [118]

Answer:

<em>a. The rock takes 2.02 seconds to hit the ground</em>

<em>b. The rock lands at 20,2 m from the base of the cliff</em>

Explanation:

Horizontal motion occurs when an object is thrown horizontally with an initial speed v from a height h above the ground. When it happens, the object moves through a curved path determined by gravity until it hits the ground.

The time taken by the object to hit the ground is calculated by:

\displaystyle t=\sqrt{\frac{2h}{g}}

The range is defined as the maximum horizontal distance traveled by the object and it can be calculated as follows:

\displaystyle d=v.t

The man is standing on the edge of the h=20 m cliff and throws a rock with a horizontal speed of v=10 m/s.

a,

The time taken by the rock to reach the ground is:

\displaystyle t=\sqrt{\frac{2*20}{9.8}}

\displaystyle t=\sqrt{4.0816}

t = 2.02 s

The rock takes 2.02 seconds to hit the ground

b.

The range is calculated now:

\displaystyle d=10\cdot 2.02

d = 20.2 m

The rock lands at 20,2 m from the base of the cliff

5 0
2 years ago
One of your summer lunar space camp activities is to launch a 1130 kg1130 kg rocket from the surface of the Moon. You are a seri
maxonik [38]

Answer:

∆U = 2.296×10^10Joules

Explanation:

Gravitational potential energy is defined as the energy possessed by an object under the influence of gravity due to its virtue of position.

Potential energy U = Fr where;

F is the force of attraction between the masses of the moon and the rocket.

r is the radius or height of the object.

From Newton's law of universal gravitation, F = GMm/r²

Potential energy U = (-GMm/r²)×r

Potential energy U = -GMm/r

The force is negative because the objects act upward.

M is the mass of the rocket

m is the mass of the moon

Gravitational potential energy possessed by the rocket

U1 = -GMm/r1

r1 is the altitude covered by the rocket

Gravitational potential energy possessed by the Moon

U2 = -GMm/(r2+r1)

r2 is the radius of the moon

Change in gravitational potential energy ∆U = U2-U1

∆U = -GMm/(r2+r1)-(-GMm/r1)

∆U = -GMm/(r2+r1) + GMm/r1

∆U = -GMm{1/(r2+r1)-1/r1}

Given

G = 6.67×10^-11m³/kgs²

M = 1130kg

m = 7.36×10²²kg

r1 = 215km = 215,000m

r2 = 1740km = 1,740,000m

∆U = -6.67×10^-11× 7.36×10²² × 1130{1/(215,000+1,740,000)-1/215000}

∆U= -55.47×10¹⁴{1/1955000-1/215000}

∆U = -55.47×10¹⁴{5.12×10^-7 - 4.65×10^-6}

∆U = -284×10^7 + 257.94×10^8

∆U = 22,954,000,000Joules

∆U = 2.296×10^10Joules

8 0
3 years ago
Other questions:
  • Matthew throws a ball straight up into the air. It rises for a period of time and then begins to drop. At which points in the ba
    7·1 answer
  • What happens when sunlight is passed through a prism?
    9·2 answers
  • Which of these forces pull or push upward, and which pull or push downward? Explain.
    10·1 answer
  • The terminal velocity of a person falling in air depends upon the weight and the area of the person facing the fluid. Find the t
    14·1 answer
  • In a single-slit diffraction experiment, the width of the slit through which light passes is reduced. What happens to the width
    15·1 answer
  • What is the charge value of 45 electrons
    12·1 answer
  • Each graph has an x- and y-axis except
    13·1 answer
  • Which letter would be compression of a longitudinal wave?
    13·1 answer
  • The length and width of a rectangular room are measured to be 3.92 ± 0.0035 m and 3.15 ± 0.0055 m. In this problem you can appro
    7·1 answer
  • How does the law of conservation of energy apply to machines?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!