hi friend the earth spin at 1,000 in meters per hour
I hope it helped you
Answer is
9.773m/s^2
-----------------------------------------------------------------------------
Given,
h=8848m
The value of sea level is 9.08m/s^2. So, Let g′ be the acceleration due to the gravity on Mount Everest.
g′=g(1 − 2h/h)
=9.8(1 - 6400000/17696)
=9.8(1 − 0.00276)
9.8×0.99724
=9.773m/s^2
Thus, the acceleration due to gravity on the top of Mount Everest is =9.773m/s^2
-----------------------------------------------------------------------
hope this helps :)
Answer:
Strato-volcano
Explanation:
Strato-volcanoes are usually characterized by the presence of steep-sided slopes, with distinct craters, and are frequently erupted and conical in appearance. This type of volcano is generally felsic in nature. Due to the presence of high silica content, the magma being highly viscous, moves at a relatively slower rate. These are highly explosive and produce a large number of pyroclastic materials, lava flow, volcanic ashes, and gases.
They are also commonly considered as the composite volcano, and are comprised of alternating tephra and solidified lava layers.
It's kinetic energy as the ball the ball isn't raised above the ground it does not have any gravitational potential energy.
To find the kinetic energy of the ball you will have to use the formula:
KE=0.5 x m x v squared
m being mass and v being velocity
so the calculation is:
0.5 x 2 x 10 x 10= 100J
10/9
Explanation:
option 2 is the correct answer