Answer:
The rolling basketball has greater momentum.
Explanation:
The momentum of an object is defined as the product of mass and velocity.
Given that the bowling mass has a greater mass than the basketball,
The bowling ball is at rest, so the velocity if the ball is zero.
The basketball is rolling, it has some velocity associated with it.
Therefore, the momentum of the bowling ball is zero.
The basketball has some momentum associated with it.
Hence, the rolling basketball has greater momentum.
Because if your putting tension on something tensions obviously going to increase with more pressure and weight on it
Answer:
(a). Energy is 64,680 J
(b) velocity is 51.43m/s
(c) velocity in mph is 115.0mph
Explanation:
(a).
The potential energy
of the payload of mass
is at a vertical distance
is
.
Therefore, for the payload of mass
at a vertical distance of
, the potential energy is


(b).
When the payload reaches the bottom of the shaft, all of its potential energy is converted into its kinetic energy; therefore,




(c).
The velocity in mph is


The correct answer is
<span>C) either the pressure of the gas, the volume of the gas, or both, will increase.
In fact, the ideal gas law can be written as
</span>

<span>where
p is the gas pressure
V is its volume
n is the number of moles
R is the gas constant
T is the absolute temperature of the gas
We can see that if the temperature T increases, then the term on the right in the equation increases, therefore the term on the left should increase as well. In order for this to be possible, at least one between p and V should increase, or also both of them. Therefore, the correct answer is C.</span>
For this, you need the v-squared equation, which is v(final)² = v(initial)² + 2aΔx
The averate acceleration is thus a = (v(final)² - v(initial)²) / 2Δx = (20² - 15²) / 2(50) = 175 / 100 = 1.75 m/s²
So the average acceleration is 1.75 m/s²