1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
attashe74 [19]
2 years ago
12

Un Iceberg, con forma aproximada a la de un paralelepípedo (rectángulo en 3D), flota en el mar de modo que la parte fuera del ag

ua tiene 10m de altura. Cuál es la altura "h" de la parte sumergida del Iceberg. Escribir la expresión algebraica de la solución antes de sustituir los datos y después el resultado.
Physics
1 answer:
sdas [7]2 years ago
5 0

Answer:

maybe could you put it in english and i could help you

You might be interested in
Is it possible to have a charge of 5 x 10-20 C? Why?
ruslelena [56]

1) No

2) Yes

3) No

4) Equal and opposite

5) 32400 N

6) Repulsive

7) The electric force is 2.3\cdot 10^{39} times bigger than the gravitational force

Explanation:

1)

In nature, the minimum possible charge that an object can have is the charge of the electron, which is called fundamental charge:

e=1.6\cdot 10^{-19}C

Electrons are indivisible particles (they cannot be separated), this means that an object can have at least the charge equal to the charge of one electron (in fact, it cannot have a charge less than e, because it would meant that the object has a "fractional number" of electrons).

In this problem, the object has a charge of

Q=5\cdot 10^{-20}C

If we compare this value to e, we notice that Q, so no object can have a charge of Q.

2)

As we said in part 1), an object should have an integer number of electrons in order to be charged.

This means that the charge of an object must be an integer multiple of the fundamental charge, so we can write it as:

Q=ne

where

Q is the charge of the object

n is an integer multiple

e is the fundamental charge

Here we have

Q=2.4\cdot 10^{-18}C

Substituting the value of e, we find n:

n=\frac{Q}{e}=\frac{2.4\cdot 10^{-18}}{1.6\cdot 10^{-19}}=15

n is integer, so this value of the charge is possible.

3)

We now do the same procedure for the new object in this part, which has a charge of

Q=2.0\cdot 10^{-19}C

Again, the charge on this object can be written as

Q=ne

where

n is the number of electrons in the object

Using the value of the fundamental charge,

e=1.6\cdot 10^{-19}C

We find:

n=\frac{Q}{e}=\frac{2.0\cdot 10^{-19}}{1.6\cdot 10^{-19}}=1.25

n is not integer, so this value of charge is not possible, since an object cannot have a fractional number of electrons.

4)

To solve this part, we use Newton's third law of motion, which states that:

"When an object A exerts a force on an object B (Action force), then object B exerts an equal and opposite force on object A (reaction force)".

In this problem, we have two objects:

- A charge Q

- A charge 5Q

Charge Q exerts an electric force on charge 5Q, and we can call this action force. At the same time, charge 5Q exerts an electric force on charge Q (reaction force), and according to Newton's 3rd law, the two forces are equal and opposite.

5)

The magnitude of the electric force between two single-point charges is

F=k\frac{q_1 q_2}{r^2}

where

k is the Coulomb's constant

q1, q2 are the two charges

r is the separation between the two charges

In this problem we have:

q_1=+4.5\cdot 10^{-6}C is charge 1

q_2=+7.2\cdot 10^{-6}C is charge 2

r = 0.30 cm = 0.003 m is the separation

So, the electric force  between the two charges is

F=(9\cdot 10^9)\frac{(4.5\cdot 10^{-6})(7.2\cdot 10^{-6})}{(0.003)^2}=32400 N

6)

The electric force between two charged objects has direction as follows:

- If the two objects have charges of opposite signs (+ and -), the force between them is attractive

- If the two objects have charges of same sign (++ or --), the force between them is repulsive

In this problem, the two charges are:

q_1=+4.5\cdot 10^{-6}C is charge 1

q_2=+7.2\cdot 10^{-6}C is charge 2

We see that the two charges have same sign: therefore, the force between them is repulsive.

7)

The electric force between the proton and the electron in the atom can be written as

F_E=k\frac{q_1 q_2}{r^2}

where

q_1 = q_2 = e = 1.6\cdot 10^{-19}C is the magnitude of the charge of the proton and of the electron

r=5.3\cdot 10^{-11} m is the separation between them

So the force can be rewritten as

F_E=\frac{ke^2}{r^2}

The gravitational force between the proton and the electron can be written as

F_G=G\frac{m_p m_e}{r^2}

where

G is the gravitational constant

m_p = 1.67\cdot 10^{-27}kg is the proton mass

m_e=9.11\cdot 10^{-27}kg is the electron mass

Comparing the 2 forces,

\frac{F_E}{F_G}=\frac{ke^2}{Gm_p m_e}=\frac{(9\cdot 10^9)(1.6\cdot 10^{-19})^2}{(6.67\cdot 10^{-11})(1.67\cdot 10^{-27})(9.11\cdot 10^{-31})}=2.3\cdot 10^{39}

8 0
3 years ago
A student claims "everything falls at the same acceleration rate on the Moon, where there is no air or friction," how would you
Alexeev081 [22]

Now let’s say you’re on the Moon. If you were to drop a hammer and a feather from the same height, which would hit the ground first?

Trick Question! On the moon both objects would hit the ground at the same time. On Earth, the hammer lands first.

So yeah, the student is right. Galileo gave us this theory long ago.

5 0
3 years ago
A ball traveling at a speed ν0 rolls off a desk and lands at a horizontal distance x0 away from the desk, as shown in the figure
klasskru [66]

Answer:

3x_0

Explanation:

The horizontal distance covered by the ball in the falling is only determined by its horizontal motion - in fact, it is given by

d=v_x t

where

v_x is the horizontal velocity

t is the time of flight

The time of flight, instead, is only determined by the vertical motion of the ball: however, in this problem the vertical velocity is not changed (it is zero in both cases), so the time of flight remains the same.

In the first situation, the horizontal distance covered is

d=v_0 t = x_0

in the second case, the horizontal velocity is increased to

v_x' = 3v_0

And so the new distance travelled will be

d' = v_x' t = 3 v_0 t = 3 x_0

So, the distance increases linearly with the horizontal velocity.

5 0
3 years ago
Calculate Speed The 2-kg metal ball moving at a speed of 3 m/s strikes a 1-kg wooden ball that is at rest. After the collision,
enot [183]

Answer:

53466kg.

Explanatiokn:

5 0
2 years ago
Brainliest!! Please help with number 4 and please give me the equation too!! Brainliest!!!
Thepotemich [5.8K]

Answer:

Oooo someone is writing a answer. (Also im new to this so Idk what to really do.)

Explanation:

8 0
3 years ago
Read 2 more answers
Other questions:
  • if an object is moving with a velocity of 24m/s and has an acceleration of -4m/s how long will it take to stop
    7·1 answer
  • When the moon orbits the Earth, it has velocity. Inertia would make the moon continue in a straight line instead of orbiting at
    9·1 answer
  • A sharp edged orifice with a 50 mm diameter opening in the vertical side of a large tank discharges under a head of 5m. If the c
    13·1 answer
  • A student slides a book across a desk, with a velocity of +8 m/s. When her friend catches the book, it has a velocity of +7.4 m/
    7·1 answer
  • Estefan has determined his BMI at 31. Explain how he can apply the FITT training principles to improve his body composition.
    6·1 answer
  • A 12000 kg train engine moving at 2.2 m/s hits and locks into 3 boxcars with a total mass of 25000 kg sitting still. If the coll
    12·2 answers
  • ____ is the study of things getting faster as they move.
    5·2 answers
  • 4. Tectonic plates are located on the __ and __.<br><br> 6. Inner core is made of ___ and ____.
    7·2 answers
  • Compare the gravitational force on a 4 kg
    14·1 answer
  • What portion of the electromagnetic spectrum is used for mass spectrometry
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!