We are given with the following pairs:
<span>carbon and oxygen
hydrogen and helium
gold and silver
and we are asked if there is a pair that will produce the same spectrum. The answer is
</span>No two elements produce the same spectrum.This is because a light spectrum is unique to each element.
Answer:
A) covalent bond
Explanation:
Covalent bonding generally happens between nonmetals.
As iron heats up, the arrangement of its atoms changes several times before it melts. ... Iron is magnetic at room temperature, and previous work predicted that iron's magnetism favors its open structure at low temperatures, but at 770 degrees Celsius iron loses its magnetism.
plz mark me as brainliest if this helped
Answer:
1.65 L
Explanation:
The equation for the reaction is given as:
A + B ⇄ C
where;
numbers of moles = 0.386 mol C (g)
Volume = 7.29 L
Molar concentration of C = 
= 0.053 M
A + B ⇄ C
Initial 0 0 0.530
Change +x +x - x
Equilibrium x x (0.0530 - x)
![K = \frac{[C]}{[A][B]}](https://tex.z-dn.net/?f=K%20%3D%20%5Cfrac%7B%5BC%5D%7D%7B%5BA%5D%5BB%5D%7D)
where
K is given as ; 78.2 atm-1.
So, we have:
![78.2=\frac{[0.0530-x]}{[x][x]}](https://tex.z-dn.net/?f=78.2%3D%5Cfrac%7B%5B0.0530-x%5D%7D%7B%5Bx%5D%5Bx%5D%7D)


Using quadratic formula;

where; a = 78.2 ; b = 1 ; c= - 0.0530
=
or 
=
or 
= 0.0204 or -0.0332
Going by the positive value; we have:
x = 0.0204
[A] = 0.0204
[B] = 0.0204
[C] = 0.0530 - x
= 0.0530 - 0.0204
= 0.0326
Total number of moles at equilibrium = 0.0204 + 0.0204 + 0.0326
= 0.0734
Finally, we can calculate the volume of the cylinder at equilibrium using the ideal gas; PV =nRT
if we make V the subject of the formula; we have:

where;
P (pressure) = 1 atm
n (number of moles) = 0.0734 mole
R (rate constant) = 0.0821 L-atm/mol-K
T = 273.15 K (fixed constant temperature )
V (volume) = ???

V = 1.64604
V ≅ 1.65 L
<u>Answer:</u> The equilibrium concentration of bromine gas is 0.00135 M
<u>Explanation:</u>
We are given:
Initial concentration of chlorine gas = 0.0300 M
Initial concentration of bromine monochlorine = 0.0200 M
For the given chemical equation:

<u>Initial:</u> 0.02 0.03
<u>At eqllm:</u> 0.02-2x x 0.03+x
The expression of
for above equation follows:
![K_c=\frac{[Br_2]\times [Cl_2]}{[BrCl]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BBr_2%5D%5Ctimes%20%5BCl_2%5D%7D%7B%5BBrCl%5D%5E2%7D)
We are given:

Putting values in above equation, we get:

Neglecting the value of x = -0.96 because, concentration cannot be negative
So, equilibrium concentration of bromine gas = x = 0.00135 M
Hence, the equilibrium concentration of bromine gas is 0.00135 M