Answer : The partial pressure of
at equilibrium is, 1.0 × 10⁻⁶
Explanation :
The partial pressure of
= 
The partial pressure of
= 
The partial pressure of
= 

The balanced equilibrium reaction is,

Initial pressure 1.0×10⁻² 2.0×10⁻⁴ 2.0×10⁻⁴
At eqm. (1.0×10⁻²-2p) (2.0×10⁻⁴+p) (2.0×10⁻⁴+p)
The expression of equilibrium constant
for the reaction will be:

Now put all the values in this expression, we get :


The partial pressure of
at equilibrium = (2.0×10⁻⁴+(-1.99×10⁻⁴) )= 1.0 × 10⁻⁶
Therefore, the partial pressure of
at equilibrium is, 1.0 × 10⁻⁶
<u>Ionic Bond</u> is formed when the electronegativity difference is 0.4 > 2.0. Electronegativity is a term that can be defined as a tendency of an atom to attract electron towards its own self.
Explanation:
Electronegativity is a term that can be defined as a tendency of an atom to attract electron towards its own self.
An electronegativity of an atom is affected by
- The atomic number of the atom
- Secondly by the distance at which the valence electron are residing from the nucleus
1. In case the electronegativity difference (which is denoted by ΔEN) is less than 0.5 then the bond formed is known as N<u>onpolar covalent.
</u>
2. In case the ΔEN is in between 0.5 and 1.6, the bond formed is referred to as the<u> Polar covalent
</u>
3. In case the ΔEN is more /greater than 2.0, then the bond formed is referred to as<u> Ionic Bond</u>
<u>2 Examples of Ionic bonds</u>
- The formation of sodium fluoride, NaF, from a sodium atom and a fluorine atom is an example of Ionic bond formation.
- Another example is the formation of NaCl from sodium (Na),which is a metal, and chloride (Cl), which is a nonmetal
Scientists use the physical and chemical properties to help them identify and classify matter. These physical and chemical properties are in a macro-perspective, in which these matter contains compounds, elements and atoms. Hence, matter can be classified in various ways, <span><span>
1. </span>Atomic number either atomic mass each element has</span>
<span><span>2. </span>By substance of that matter either pure substance or mixed substance</span> <span>
3. If they cannot reduce a certain substance into a much smaller quantified atomic structure then they they’ll use (2) to identify and classify it.</span>
<span>d. filters out harmful ultraviolet radiation</span>
W = F = mg
(2)(9.8)
W = 19.6 N