You don't "turn" it into energy; petroleum HAS stored energy (chemical energy).However, you can turn it into ANOTHER TYPE OF ENERGY; usually this is done by burning the petroleum, and using it to drive machinery.
Since burning fuels is wasteful (the efficiency is limited, in theory, to the Carnot efficiency of a heat engine), other options are being explored, such as chemical reactions in a fuel cell. But such technology is not yet used on a large scale.
Answer: 5. Positive
6. Negative
9. Oxygen carbon hydrogen nitrogen
Explanation:
Answer:
Tetrahedral, trigonal pyramidal, trigonal bipyramidal.
Explanation:
The VSPER theory states that the bonds of sharing electrons and the lone pairs of electrons will repulse as much as possible. So, by the repulsion, the molecule will have some shape.
In the ion PO₄³⁻, the central atom P has 5 electrons in its valence shell, so it needs 3 electrons to be stable. Oxygen has 6 electrons at the valence shell and needs 2 to be stable. 3 oxygens share 1 pair of electrons with P, and the two lone pair remaining in P is shared with the other O, then the central atom makes 4 bonds and has no lone pairs, the shape is tetrahedral.
In the ion H₃O⁺, the central atom O has 6 electrons in its valence shell and needs 2 electrons to be stable. The hydrogen has 1 electron, and need 1 more to be stable. The hydrogens share 1 pair of electrons with the oxygen, then it remains 3 electrons at the central atom, and the VSPER theory states that the shape will be a trigonal pyramidal.
In the AsF₅, the central atom As has 5 valence electrons, and F has 1 electron in its valence shell, so each F shares one pair of electrons with As, and there are no lone pairs in the central atom. For 5 bonds without lone pairs, the shape is trigonal bipyramidal.
The white-tailed deer. (D)
The rest are plants, which make their own energy from photosynthesis.
Answer:
-1160kj/mol
Explanation:
the reaction is exothermic because heat is released to the environment