<u>Explanation:</u>
Reaction quotient is defined as the ratio of the concentration of the products and reactants of a reaction at any point of time with respect to some unit. It is represented by the symbol <em>Q</em>.
The ratio of the concentration of products and reactants of a reaction in equilibrium with respect to some unit is said to be equilibrium constant expression. It is represented by the symbol <em>K</em>.
The relationship between Gibbs free energy change and reaction quotient of the reaction is:
......(1)
where,
= Gibbs free energy change
= Standard Gibbs free energy change
R = Gas constant
T = Temperature
At equilibrium, the free energy change of the reaction becomes 0 and standard Gibbs free energy change can be related to the equilibrium constant by the equation:
...(2)
Since the bag was at rest, its initial momentum is zero. The velocity of the ball before collision is 500 ms-1.
<h3>Linear momentum</h3>
The term momentum in physics refers the product of mass and velocity. If we know mass of the object and its velocity, then we calculate the momentum.
Momentum before collision for the bullet = 0.01 kg × v
Momentum before collision for the bag = 0
Momentum after collision for the bag and bullet = (0.01 kg + 0.49 kg) 10 = 5 Kgms-1
The velocity of the bullet before collision = 0.01 kg × v + 0 = 5 Kgms-1
v = 5 Kgms-1/0.01 kg
v = 500 ms-1
Learn more about momentum: brainly.com/question/904448
I believe it is the first one
Answer:
True
Explanation:
The image produced a convex mirror is always virtual irrespective of location. The size of the image is always smaller than the object. In a plane mirror the distance of the object and the distance of the image is same. But in a convex the image distance is always less than the object distance.
So, this statement is true.
The kinetic energy is the same as the potential energy of raising it 40cm (0.4m). That's mgh where m is mass of ball. Its then 3.924*m, whatever m is equal to in kg.