1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bond [772]
4 years ago
13

1.

Physics
1 answer:
rusak2 [61]4 years ago
7 0

Answer:

9.6

Explanation:

to convert km to miles multiply by 1.609

You might be interested in
If an object's kinetic energy is zero, what is its momentum?
hammer [34]
If the object's kinetic energy is zero, then due to in multiplication factor, it's momentum will also be equal to zero 'cause the velocity of the object must be Nil

In short, Your Answer would be: "Zero"

Hope this helps!
6 0
3 years ago
A uniformly charged ring of radius 10.0 cm has a total charge of 75.0 mC. Find the electric field on the axis of the ring at (a)
wlad13 [49]

Answer:

(a) 6650246.305 N/C

(b) 24150268.34 N/C

(c) 6408227.848 N/C

(d) 665024.6305 N/C

Explanation:

Given:

Radius of the ring (r) = 10.0 cm = 0.10 m           [1 cm = 0.01 m]

Total charge of the ring (Q) = 75.0 μC = 75\times 10^{-6}\ \mu C    [1 μC = 10⁻⁶ C]

Electric field on the axis of the ring of radius 'r' at a distance of 'x' from the center of the ring is given as:

E_x=\dfrac{kQx}{(x^2+r^2)^\frac{3}{2}}

Plug in the given values for each point and solve.

(a)

Given:

Q=75\times 10^{-6}\ \mu C, r=0.01\ m, a=1.00\ cm=0.01\ m,k=9\times 10^{9}\ Nm^2/C^2

Electric field is given as:

E_x=\dfrac{(9\times 10^{9})(75\times 10^{-6})(0.01)}{((0.01)^2+(0.1)^2)^\frac{3}{2}}\\\\E_x=\dfrac{6750}{1.015\times 10^{-3}}\\\\E_x=6650246. 305\ N/C

(b)

Given:

Q=75\times 10^{-6}\ \mu C, r=0.01\ m, a=5.00\ cm=0.05\ m,k=9\times 10^{9}\ Nm^2/C^2

Electric field is given as:

E_x=\dfrac{(9\times 10^{9})(75\times 10^{-6})(0.05)}{((0.05)^2+(0.1)^2)^\frac{3}{2}}\\\\E_x=\dfrac{33750}{1.3975\times 10^{-3}}\\\\E_x=24150268.34\ N/C

(c)

Given:

Q=75\times 10^{-6}\ \mu C, r=0.01\ m, a=30.0\ cm=0.30\ m,k=9\times 10^{9}\ Nm^2/C^2

Electric field is given as:

E_x=\dfrac{(9\times 10^{9})(75\times 10^{-6})(0.30)}{((0.30)^2+(0.1)^2)^\frac{3}{2}}\\\\E_x=\dfrac{202500}{0.0316}\\\\E_x=6408227.848\ N/C

(d)

Given:

Q=75\times 10^{-6}\ \mu C, r=0.01\ m, a=100\ cm=1\ m,k=9\times 10^{9}\ Nm^2/C^2

Electric field is given as:

E_x=\dfrac{(9\times 10^{9})(75\times 10^{-6})(1)}{((1)^2+(0.1)^2)^\frac{3}{2}}\\\\E_x=\dfrac{675000}{1.015}\\\\E_x=665024.6305\ N/C

7 0
3 years ago
A stunt driver drives a car horizontally off the edge of a cliff at 3.8m/s and reaches the water below 2.5s later.
andreyandreev [35.5K]
A. The cliff was 30.7 m high
B. I also got 9.5 as the horizontal distance

Here is my work, I find making charts like this one to find knowns and unknowns can be helpful

4 0
3 years ago
A 72.8-kg swimmer is standing on a stationary 265-kg floating raft. The swimmer then runs off the raft horizontally with a veloc
nalin [4]

Answer:

-1.43 m/s relative to the shore

Explanation:

Total momentum must be conserved before and after the run. Since they were both stationary before, their total speed, and momentum, is 0, so is the total momentum after the run off:

m_sv_s + m_rv_r = 0

where m_s = 72.8, m_r = 265 are the mass of the swimmer and raft, respectively. v_s = 5.21 m/s, v_r are the velocities of the swimmer and the raft after the run, respectively. We can solve for v_r

265v_r + 72.8*5.21 = 0

v_b = -72.8*5.21/265 = -1.43 m/s

So the recoil velocity that the raft would have is -1.43 m/s after the swimmer runs off, relative to the shore

7 0
3 years ago
The elastic energy stored in your tendons can contribute up to 35 % of your energy needs when running. Sports scientists have st
irina [24]

Complete Question:

The elastic energy stored in your tendons can contribute up to 35 % of your energy needs when running. Sports scientists have studied the change in length of the knee extensor tendon in sprinters and nonathletes. They find (on average) that the sprinters' tendons stretch 43 mm , while nonathletes' stretch only 32 mm . The spring constant for the tendon is the same for both groups, 31 {\rm {N}/{mm}}. What is the difference in maximum stored energy between the sprinters and the nonathlethes?

Answer:

\triangle E = 12.79 J

Explanation:

Sprinters' tendons stretch, x_s = 43 mm = 0.043 m

Non athletes' stretch, x_n = 32 mm = 0.032 m

Spring constant for the two groups, k = 31 N/mm = 3100 N/m

Maximum Energy stored in the sprinter, E_s = 0.5kx_s^2

Maximum energy stored in the non athletes, E_m = 0.5kx_n^2

Difference in maximum stored energy between the sprinters and the non-athlethes:

\triangle E = E_s - E_n = 0.5k(x_s^2 - x_n^2)\\\triangle E = 0.5*3100* (0.043^2 - 0.032^2)\\\triangle E = 0.5*31000*0.000825\\\triangle E = 12.79 J

4 0
3 years ago
Other questions:
  • Light travels through a substance at 1.97 x 10^8 m/s. What is the index of the liquid? What type of liquid is it?
    13·2 answers
  • Describe the general characteristics of the nearest stars. (Size, luminosity, color, etc., do not include specific stars)
    11·1 answer
  • To work on your car at night, you use an extension cord to connect your work light to a power outlet near the door. How would th
    5·1 answer
  • classify the following elements as halogens alkali metals alkaline earth metals, transition elements or inner transitional eleme
    8·1 answer
  • What is so unusual about plutos orbit
    12·1 answer
  • Honey solidifies from the bottom whereas water from the top. Why?
    13·1 answer
  • Hey hi can someone help? ​
    5·2 answers
  • A ball of radius R and mass m is magically put inside a thin shell of the same mass and radius 2R. The system is at rest on a ho
    10·1 answer
  • A Yugo can accelerate from rest to a speed of 28 m/s in 20 s. What is the average acceleration of the car? What distance does it
    5·1 answer
  • Which option correctly matches the chemical formula of a compound with its name?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!