n = m/M = 2/18 = 1/9 ~0,1 mol
Be-beryllium have 2 electrons and it is in the 2 nd period
Answer:
The answer you have selected in the screenshot is correct.
Its tendency to react with oxygen is correct.
Hope this helps.
Answer:
The mass of this 25 mL supercritical CO2 sample has a mass of 11.7g
Explanation:
Step 1: Given data
The supercritical CO2 has a density of 0.469 g/cm³ (or 0.469 g/mL)
The sample hasa volume of 25.0 mL
Step 2: Calculating mass of the sample
The density is the mass per amount of volume
0.469g/cm³ = 0.469g/ml
The mass for a sample of 25.0 mL = 0.469g/mL * 25.0 mL = 11.725g ≈ 11.7g
The mass of this 25 mL supercritical CO2 sample has a mass of 11.7g
The formula we use would be the graham's law. We do as follows:
<span>E_Kr / E_Ne = sqrt ( M_Ne / M_Kr)
</span>
<span>= sqrt ( 20.1797 g/mol / 83.798 g/mol ) </span>
<span>= sqrt (0.24081) </span>
<span>= 0.4907
</span>
Hope this answers the question. Have a nice day.