Densities are mostly used to identify substances and to characterize and estimate the composition of many kinds of mixtures.
Given the wavelength of the yellow light (700 nm. in this case) we can find the frequency
<span>by dividing the speed of light c by the wavelength w, that is: f = c/w and we know that </span>
<span>c is equal to 2.998 * 10**8 meters per second. </span>
<span>So the frequency f = (2.998 * 10**8) / (7.0 * 10**-7) = 4.283 * 10**14 cycles per sec. </span>
<span>(or Hz.) Since the threshold frequency of Cs is 9.39 * 10**14 Hz, the red light doesn't </span>
<span>have a high enough frequency (or energy) to cause electron emission. </span>
<span>Hope this answers your question.</span>
Thermal, electrical, chemical, nuclear, and electromagnetic energy. (just gave you more than two just incase)
Answer:
There is 17.1 kJ energy required
Explanation:
Step 1: Data given
Mass of ethanol = 322.0 grams
Initial temperature = -2.2 °C = 273.15 -2.2 = 270.95K
Final temperature = 19.6 °C = 273.15 + 19.6 = 292.75 K
Specific heat capacity = 2.44 J/g*K
Step 2: Calculate energy
Q = m*c*ΔT
⇒ m = the mass of ethanol= 322 grams
⇒ c = the specific heat capacity of ethanol = 2.44 J/g*K
⇒ ΔT = T2 - T1 = 292.75 - 270.95 = 21.8 K
Q = 322 * 2.44 * 21.8 = 17127.8 J = 17.1 kJ
There is 17.1 kJ energy required