Answer:
Explanation:
Given:
Tooth Number, N = 24
Diametral pitch pd = 12
pitch diameter, d = N/pd = 24/12 = 2in
circular pitch, pc = π/pd = 3.142/12 = 0.2618in
Addendum, a = 1/pd = 1/12 =0.08333in
Dedendum, b = 1.25/pd = 0.10417in
Tooth thickness, t = 0.5pc = 0,5 * 0.2618 = 0.1309in
Clearance, c = 0.25/pd = 0.25/12 = 0.02083in
Answer:
88750 N
Explanation:
given data:
plastic deformation σy=266 MPa=266*10^6 N/m^2
cross-sectional area Ao=333 mm^2=333*10^-6 m^2
solution:
To determine the maximum load that can be applied without
plastic deformation (Fy).
Fy=σy*Ao
=88750 N
U mean how to connect them to your phone?
Answer:
c = 18.0569 mm
Explanation:
Strategy
We will find required diameter based on angle of twist and based on shearing stress. The larger value will govern.
Given Data
Applied Torque
T = 750 N.m
Length of shaft
L = 1.2 m
Modulus of Rigidity
G = 77.2 GPa
Allowable Stress
г = 90 MPa
Maximum Angle of twist
∅=4°
∅=4*
/180
∅=69.813 *10^-3 rad
Required Diameter based on angle of twist
∅=TL/GJ
∅=TL/G*
/2*c^4
∅=2TL/G*
*c^4
c=
∅
c=18.0869 *10^-3 rad
Required Diameter based on shearing stress
г = T/J*c
г = [T/(J*
/2*c^4)]*c
г =[2T/(J*
*c^4)]*c
c=17.441*10^-3 rad
Minimum Radius Required
We will use larger of the two values
c= 18.0569 x 10^-3 m
c = 18.0569 mm
These parts are commonly called carburetor emulsion tubes. These tubes maintain the air-fuel ratio at different speeds.
The carburetor is a device of the combustion engine power supply system that mixes fuel and air in order to facilitate internal combustion.
The carburetor emulsion tubes are tubes that maintain the air-fuel ratio at different velocities.
These tubes (carburetor emulsion tubes) are small brass cylinders where the metering needle slides into them.
Learn more about carburetors here:
brainly.com/question/4237015