Answer:
The pressure reduces to 2.588 bars.
Explanation:
According to Bernoulli's theorem for ideal flow we have

Since the losses are neglected thus applying this theorm between upper and lower porion we have

Now by continuity equation we have

Applying the values in the Bernoulli's equation we get

Answer:
The tension in the rope at the lowest point is 270 N
Explanation:
Given;
weight of the ball, W = 150 N
length of the rope, r = 4 m
velocity of the ball, v = 5.6 m/s
When the ball passes through the lowest point, the tension on the rope is the sum of weight of the ball and centripetal force.
T = W + F
Centripetal force, F = mv²/r
where;
m is the mass of the ball
m = W/g
m = 150 / 9.8 = 15.306 kg
Centripetal force, F = mv²/r
F = (15.306 x 5.6²)/4
F = 120 N
T = W + F
T = 150 + 120
T = 270 N
Therefore, the tension in the rope at the lowest point is 270 N
Answer:
The flux (volume of water per unit time) through the hoop will also double.
Explanation:
The flux = volume of water per unit time = flow rate of water through the hoop.
The Flow rate of water through the hoop is proportional to the area of the hoop, and the velocity of the water through the hoop.
This means that
Flow rate = AV
where A is the area of the hoop
V is the velocity of the water through the hoop
This flow rate = volume of water per unit time = Δv/Δt =Q
From all the above statements, we can say
Q = AV
From the equation, if we double the area, and the velocity of the stream of water through the hoop does not change, then, the volume of water per unit time will also double or we can say increases by a factor of 2
Answer:
M = 281.25 lb*ft
Explanation:
Given
W<em>man</em> = 150 lb
Weight per linear foot of the boat: q = 3 lb/ft
L = 15.00 m
M<em>max</em> = ?
Initially, we have to calculate the Buoyant Force per linear foot (due to the water exerts a uniform distributed load upward on the bottom of the boat):
∑ Fy = 0 (+↑) ⇒ q'*L - W - q*L = 0
⇒ q' = (W + q*L) / L
⇒ q' = (150 lb + 3 lb/ft*15 ft) / 15 ft
⇒ q' = 13 lb/ft (+↑)
The free body diagram of the boat is shown in the pic.
Then, we apply the following equation
q(x) = (13 - 3) = 10 (+↑)
V(x) = ∫q(x) dx = ∫10 dx = 10x (0 ≤ x ≤ 7.5)
M(x) = ∫10x dx = 5x² (0 ≤ x ≤ 7.5)
The maximum internal bending moment occurs when x = 7.5 ft
then
M(7.5) = 5(7.5)² = 281.25 lb*ft
Tools, weapons, hardware, armor