This is the period in a simple harmonic motion which is 2 seconds in this question.
<h3>
What is Period ?</h3>
The period of an oscillatory object can be defined as the total time taken by a vibrating body to make one complete revolution about a reference point.
We are given the below question
2×3.14√(1.0m/(9.8〖ms〗^(2) )= T
This question can as well be expressed as
2π√(L/g) which is equal to period T.
In a nut shell, Period T = 2×3.14√(1.0m/9.8)
T = 6.28√0.102
T = 6.28 × 0.32
T = 2.006 s
Therefore, the period T of the oscillation is 2 seconds approximately.
Learn more about Period here: brainly.com/question/12588483
#SPJ1
<span>The maximum possible efficiency, i.e the efficiency of a Carnot engine , is give by the ratio of the absolute temperatures of hot and cold reservoir.
η_max = 1 - (T_c/T_h)
For this engine:
η_max = 1 - [ (20 +273)K/(600 + 273)K ] = 0.66 = 66%
The actual efficiency of the engine is 30%, i.e.
η = 0.3 ∙ 0.664 = 0.20 = 20 %
On the other hand thermal efficiency is defined as the ratio of work done to the amount of heat absorbed from hot reservoir:
η = W/Q_h
So the heat required from hot reservoir is:
Q_h = W/η = 1000J / 0.20 = 5000J</span>
PART a)
As we know that gravitational potential energy is given by the formula

here we can see that gravitational potential energy inversely varies with the distance
so here when distance from the sun is minimum then magnitude of gravitational potential energy is maximum while since it is given with negative sign so its overall value is minimum at that position
So gravitational potential energy is minimum at the nearest point and maximum at the farthest point
PART b)
Since we know that sum of kinetic energy and potential energy is constant here
so the points of minimum potential energy is the point where kinetic energy is maximum which means speed is maximum
So here speed is maximum at the nearest point
Part C)
since gravitational potential energy inversely varies with distance so it's graph will be like hyperbolic graph with distance
The Beams And Joints That Hold It .
We will use the ideal gas equation:
PV = nRT, where n is moles and equal to mass / Mr
P = mRT/MrV
P = 15.4 x 8.314 x (22.55 + 273) / 32 x 4.44
P = 266.3 kPa