The answer is bend towards normal.
Answer:
434 Hz
Explanation:
According to the Doppler effect, when a source of a wave is moving towards an observer at rest, then the observer will observe an apparent frequency which is higher than the original frequency of the source.
In this situation, Tina is driving towards Rita. Tina is the source of the sound wave (the horn), while RIta is the observer. Since the original frequency of the sound is 400 Hz, Rita will hear a sound with a frequency higher than this value.
The only choice which is higher than 400 Hz is 434 Hz, so this is the frequency that Rita will hear.
Answer:
For the complete question provided in explanation, if the elevator moves upward, then the apparent weight will be 1035 N. While for downward motion the apparent weight will be 435 N.
Explanation:
The question is incomplete. The complete question contains a velocity graph provided in the attachment. This is the velocity graph for an elevator having a passenger of 75 kg.
From the slope of graph it is clear that acceleration at t = 1 sec is given as:
Acceleration = a = (4-0)m/s / (1-0)s = 4 m/s^2
Now, there are two cases:
1- Elevator moving up
2- Elevator moving down
For upward motion:
Apparent Weight = m(g + a)
Apparent Weight = (75 kg)(9.8 + 4)m/s^2
<u>Apparent Weight = 1035 N</u>
For downward motion:
Apparent Weight = m(g - a)
Apparent Weight = (75 kg)(9.8 - 4)m/s^2
<u>Apparent Weight = 435 N</u>
Answer:
a.) F = 3515 N
b.) F = 140600 N
Explanation: given that the
Mass M = 74kg
Initial velocity U = 7.6 m/s
Time t = 0.16 s
Force F = change in momentum ÷ time
F = (74×7.6)/0.16
F = 3515 N
b.) If Logan had hit the concrete wall moving at the same speed, his momentum would have been reduced to zero in 0.0080 seconds
Change in momentum = 74×7.6 + 74×7.6
Change in momentum = 562.4 + 562.4 = 1124.8 kgm/s
F = 1124.8/0.0080 = 140600 N
Explanation:
Michael should put the vase at the bottom of the shelf to reduce the potential energy because the height of the vase to the floor is nearly zero.