Answer:
- C-B
- C-C
- C-N
- C-O
- C-F
Explanation:
As we move along to the <u>right in the same period, the electronegativity</u> and <u>the effective nuclear charge values are higher.</u>
The tendency is that <em>the higher these values are, the shorter the bonds will be</em>.
With that information in mind, and looking at the periodic table, the order would be:
- C-B
- C-C
- C-N
- C-O
- C-F
Where the C-F bond is the shortest among them.
The answer is:
E per gram = 0.45 V
The explanation:
when MnO2 is the substance who oxidized here so, the oxidizing agent and the anode here is Li.
and when the molar mass of Li is = 7 g/mol
and in our reaction equation we have 1 mole of Li will give 3.15 V of the electrical energy
that means that :
7 g of Li gives → 3.15 V
So 1 g of Li will give→ ???
∴ The E per gram = 3.15 V / 7 g of Li
= 0.45 V
Answer:
0.3267 M
Explanation:
To solve this problem, first we calculate how many moles of Mn(ClO₄)₂ are contained in 23.640 g of Mn(ClO₄)₂·6H₂O.
Keep in mind that the crystals of Mn(ClO₄)₂ are hydrated, and <em>we need to consider those six water molecules when calculating the molar mass of the crystals</em>.
Molar mass of Mn(ClO₄)₂·6H₂O = 54.94 + (35.45+16*4)*2 + 6*18 = 361.84 g/mol
Now we <u>proceed to calculate</u>:
- 23.640 g Mn(ClO₄)₂·6H₂O ÷ 361.84 g/mol = 0.0653 mol Mn(ClO₄)₂·6H₂O = mol Mn(ClO₄)₂
Now we divide the moles by the volume, to <u>calculate molarity</u>:
- 200 mL⇒ 200/1000 = 0.200 L
- 0.0653 mol Mn(ClO₄)₂ / 0.200 L = 0.3267 M
Answer:
C
Explanation:
Cyclohexane is a cycloalkane with the molecular formula C₆H₁₂. Cyclohexane is non-polar.
CO2<span> is a linear molecule and the Oxygen (O) atoms on each end are symmetrical. Polarity results from an unequal sharing of valence electrons. Because of this symmetry there is no region of unequal sharing and </span>CO2<span> is a</span>nonpolar<span> molecule</span>