The pH of a solution at 25. 0 °C that contains 2. 95 × 10^-12 m hydronium ions is 13.5.
<h3>What is pH? </h3>
pH is defined as the concentration of the hydrogen bond which is released or gained by the species in the solution which depicts the acidity and basicity of the solution.
<h3>What is pOH? </h3>
pOH is defined as the concentration of the hydronium ion present in solution.
pOH value is inversely proportional to the value of pH.
pH value increases, pOH value decreases and vice versa.
Given,
Total H+ ions = 2.95 ×10^(-12)M
<h3>Calculation of pH</h3>
pH = -log[H+]
By substituting the value of H+ ion in given equation
= log(2.95× 10^(-12) )
= 13.5
Thus we find that the pH of a solution at 25. 0 °C that contains 2. 95 × 10^-12 m hydronium ions is 13.5.
learn more about pH:
brainly.com/question/12942138
#SPJ4
Answer:
n = Initial volume/22.4L
Explanation:
The molar concept is simply one that is used to find the Number of moles and explain the relationship it has with avogadro's number, molecular mass, molar mass e.t.c.
Now, in terms of molar mass, number of moles is given by the formula;
n = mass of the sample/molar mass
In terms of avogadro's number, number of moles is;
1 mole = avogadro's number = 6.02 × 10^(23)
Now, when dealing with ideal gases, the molar volume of an ideal gas is 22.4 L.
Now the relationship between this volume and the mole concept is that the number of moles is gotten by dividing the initial volume by this molar volume.
Thus;
n = Initial volume/22.4L
Answer:
Mole fraction for C₂₂H₁₉Cl₂NO₃ = 0.0086
Explanation:
Mole fraction remains a sort of concentration. It indicates:
moles of solute / (moles of solute + moles of solvent)
Moles of solute / Total moles.
Solute: Cypermethrin → C₂₂H₁₉Cl₂NO₃
Solvent: Water (PM = 18g/mol)
We calculate moles from solvent: 1000g /18 g/mol = 55.5 moles
We calculate PM for C₂₂H₁₉Cl₂NO₃
12g/mol . 22 + 1g/mol . 19 + 35.45 g/mol . 2+ 14g/mol + 16g/mol . 3 = 416 g/m
Moles of solute: 200 g / 416g/mol = 0.481 moles
Total moles: 0.481 + 55.5 = 55.98 moles
Mole fraction for C₂₂H₁₉Cl₂NO₃ = 0.481 moles / 55.98 moles = 0.0086
The answer is A - cytosine and adenine
Answer:
H2O<en<phen
Explanation:
The degree of d- splitting is observed from the intensity of colour. The order of d splitting from least to greatest is H2O<en<phen. Phen shows the greatest d-splitting. The degree of splitting of d- orbitals by ligands depends on their relative positions in the spectrochemical series. The spectrochemical series is an experimentally determined series. The series separates the ligands into strong field and weak field ligands. Strong field ligands are found towards the end of the series. Strong field ligands such as en and phen can participate in metal to ligand or ligand to metal pi-bonding. Hence they cause more d-splitting. Ethylendiamine and phenanthroline occur towards the end of the spectrochemical series hence the higher order of d-splitting.