Answer:
T = 100.63 °C
Explanation:
To solve this question, we need to know what are we talking about here. In this case, we want to know the boiling point of a solution with Urea in water. This is a colligative property, so, the expression to use to calculate that is the following:
ΔT = m * K / MM * kg water (1)
Where:
ΔT: difference of temperatures (Tb of solution - Tb water)
m: mass of the urea
K: ebulloscopic constant of the water (0.52 ° C / m)
MM: molecular mass of urea
The boiling point of water is 100 °C, we have the mass of the urea, but not the molar mass. The urea has the formula CH₄N₂O, so the molar mass can be calculated using the atomic mass of the elements (I will use a rounded number for this):
MM = 12 + (4*1) + (2*14) + 16 = 60 g/mol
Now, we can calculate the ΔT and then, the boiling point of the solution:
ΔT = 12 * 0.52 / 60 * 0.165
ΔT = 6.24 / 9.9
ΔT = 0.63 °C
the value of ΔT is a difference between the boling point of water and the solution so:
ΔT = Ts - Tw
Ts = ΔT + Tw
Replacing we have:
Ts = 100 + 0.63
<h2>
Ts = 100.63 ° C</h2>
Explanation:
An electron cloud is the region of space that surrounds the nucleus of an atom under the nucleus of the negatively charged sub-atomic particles.
- An atoms is made up of some particles.
- The proton is positively charged and it is located in the nucleus of an atom.
- The neutrons do not carry any charges and occupies the nucleus with protons.
- Electrons are the negatively charged particles outside the nucleus.
- The electron cloud is portion of an atom with greatest probability of finding an electron.
Learn more:
Electron cloud brainly.com/question/1832385
#learnwithBrainly
Answer:
The atomic number that should be here, 57, is located at the bottom of the table in the row called the Lanthanides. Directly below the space in Row 6, in Row 7, is another empty space, which is filled by a row called the Actinides, also seen at the bottom of the chart.
Explanation:
hope this helps!
Answer:
These glucose molecules are stored in the liver and muscles to be used for fuel, especially during physical activity. Carbohydrates improve athletic performance by delaying fatigue and allowing an athlete to compete at higher levels for longer. nutrients, such as fat or muscle protein, are utilized to make energy.
Explanation: