Answer:
Time = 1.75[s]; Distance traveled = 21.5 [m]; Max height = 15 [m]
Explanation:
First, we have to break down the velocity vector into the X & y components.
![(v_{x})_{0} = 15 * cos( 35)= 12.28[m/s]\\(v_{y})_{0} = 15 * sin( 35)= 8.6[m/s]\\\\](https://tex.z-dn.net/?f=%28v_%7Bx%7D%29_%7B0%7D%20%3D%2015%20%2A%20cos%28%2035%29%3D%2012.28%5Bm%2Fs%5D%5C%5C%28v_%7By%7D%29_%7B0%7D%20%3D%2015%20%2A%20sin%28%2035%29%3D%208.6%5Bm%2Fs%5D%5C%5C%5C%5C)
To find the time t that lasts the ball of cannon in the air we must use the following equation of kinematics, in this equation the value of y is equal to zero because it will be proposed that the ball lands at the same level that was fired.
![y=(v_{y} )_{0}-\frac{1}{2}*g*t^{2} \\where:\\g=9.81[m/s^2]\\t = time[s]\\y=0[m]](https://tex.z-dn.net/?f=y%3D%28v_%7By%7D%20%29_%7B0%7D-%5Cfrac%7B1%7D%7B2%7D%2Ag%2At%5E%7B2%7D%20%20%20%5C%5Cwhere%3A%5C%5Cg%3D9.81%5Bm%2Fs%5E2%5D%5C%5Ct%20%3D%20time%5Bs%5D%5C%5Cy%3D0%5Bm%5D)
![0=8.6*t-\frac{1}{2}*9.81*t^{2} \\4.905*t^{2}=8.6*t\\ t=1.75[s]](https://tex.z-dn.net/?f=0%3D8.6%2At-%5Cfrac%7B1%7D%7B2%7D%2A9.81%2At%5E%7B2%7D%20%20%5C%5C4.905%2At%5E%7B2%7D%3D8.6%2At%5C%5C%20t%3D1.75%5Bs%5D)
In order to find the distance traveled horizontally from the cannonball, we must use the speed kinematics equation in the X coordinate.
![x = (v_{x})_{0} *t\\x=12.28*1.75\\x=21.5 [m]](https://tex.z-dn.net/?f=x%20%3D%20%28v_%7Bx%7D%29_%7B0%7D%20%20%2At%5C%5Cx%3D12.28%2A1.75%5C%5Cx%3D21.5%20%5Bm%5D)
In order to find the last value, we must bear in mind that when the cannonball reaches the maximum height, the velocity in the component y is equal to zero, and we can find the value of and with the following kinematic equation
![y = (v_{y})_{0} *t+\frac{1}{2} *g*(t)^{2} \\y = 0*t+\frac{1}{2} *9.81*(1.75)^{2}\\ y=15 [m]](https://tex.z-dn.net/?f=y%20%3D%20%28v_%7By%7D%29_%7B0%7D%20%2At%2B%5Cfrac%7B1%7D%7B2%7D%20%2Ag%2A%28t%29%5E%7B2%7D%20%5C%5Cy%20%3D%200%2At%2B%5Cfrac%7B1%7D%7B2%7D%20%2A9.81%2A%281.75%29%5E%7B2%7D%5C%5C%20y%3D15%20%5Bm%5D)
<span>False. Laser transmissions and radio waves are both forms of electromagnetic radiation. Both travel at approximately 3.00 x 10^8 meters per second. This is the case because wavelength and frequency are directly proportional to this value. Although laser light has a shorter wavelength than radio waves, it will travel at the same speed because the frequency will be greater.</span>
The spectrum of light from the moon should very strongly resemble the spectrum of sunlight. The reason is that any light from the moon started out from the sun. Any difference in their spectra is only due to the moon absorbing more of some wavelengths and less of others. But since the moon appears colorless gray, we don't expect any particular colors to be strongly absorbed, otherwise the moon would look to be the colors of the light that's left.
Explanation:
The critical velocity is that velocity of liquid flow, up to which its flow is streamlined (laminar)& above which its flow becomes turbulent. It's denoted by Vc & it depends upon: Coefficient of viscosity of liquid (η) Density of liquid. Radius of the tube.