Answer:
Put water at room temperature into a vacuum chamber and begin removing the air. Eventually, the boiling temperature will fall below the water temperature and boiling will begin without heating. Or if you want to be easy but messy, add dry ice to a bowl of water and watch how the water starts to boil.
D) Both A and B.
Francisco Redi must use 1)a covered, unrefrigerated meat and 2) an uncovered, refrigerated meat to experiment and test his hypothesis that maggots came from flies rather than from meat.
Answer:
It can be replicated and verified.
(c) is correct option.
Explanation:
Given that,
The following statements about a pseudoscientific idea.
(a). It is biased in its results.
(b). It can be tested and observed.
(c). It can be replicated and verified.
(d). It is improved with new information.
We know that,
Pseudo science :
In a pseudoscience, such as statements, trusts and facts about whom it is said these are scientific and logical but these statements is anomalous through the scientific method.
So, we can say that the statement is true about a pseudoscientific idea that is It can be replicated and verified
Hence, It can be replicated and verified.
(c) is correct option.
Answer:
Final speed of striped ball is 3 m/s in left direction .
Explanation:
Given :
Two billiard ball with the same mass moves toward the left at the same speed 3 m/s .
Let , us assume right hand side direction to be positive and left hand side direction to be negative .
Also , let speed of ball after collision is (striped ball ) u and (solid ball) v .
It is also given that the collision is elastic .
Therefore , kinetic energy is conserved .
...... ( 1 )
Also , by conserving linear momentum .
We get :
...... ( 2 )
Putting value of u from equation 2 to equation 1 .
We get :

And , u = -3 m/s .
Therefore , final speed of striped ball is 3 m/s in left direction .
Hence , this is the required solution .
Answer:
the work that must be done to stop the hoop is 2.662 J
Explanation:
Given;
mass of the hoop, m = 110 kg
speed of the center mass, v = 0.22 m/s
The work that must be done to stop the hoop is equal to the change in the kinetic energy of the hoop;
W = ΔK.E
W = ¹/₂mv²
W = ¹/₂ x 110 x 0.22²
W = 2.662 J
Therefore, the work that must be done to stop the hoop is 2.662 J