Solar Energy is the answer
Answer:
In our Sun, as in other stars, roughly 99.9% or so of all light emitted is emitted in a thin layer known as the photosphere, or light sphere. This is explained as follows. Interior to the photosphere the gas is ever denser and becomes far too opaque for any photon to emerge directly from that layer.
Explanation:
Answer:
Well, not always. It depends on where you're doing the boiling. In fact, water will boil at about 202 degrees in Denver, due to the lower air pressure at such high elevations
Explanation:
Answer:
58.0 g/mol
Explanation:
The reaction that takes place is:
- MCl₂ + 2AgNO₃ → 2AgCl + M(NO₃)₂
First we <u>calculate how many moles of silver chloride</u> were produced, using its <em>molar mass</em>:
- 6.41 g AgCl ÷ 143.32 g/mol = 0.0447 mol AgCl
Then we <u>convert AgCl moles into MCl₂ moles</u>, using the <em>stoichiometric ratio</em>:
- 0.0447 mol AgCl *
= 0.0224 mol MCl₂
Now we<u> calculate the molar mass of MCl₂</u>, using the original<em> mass of the sample</em>:
- 2.86 g / 0.0224 mol = 127.68 g/mol
We can write the molar mass of MCl₂ as:
- Molar Mass MCl₂ = Molar Mass of M + (Molar Mass of Cl)*2
- 127.68 g/mol = Molar Mass of M + (35.45 g/mol)*2
Finally we<u> calculate the molar mass</u> of M:
- Molar Mass of M = 57 g/mol
The closest option is 58.0 g/mol.