(a)

Substitute <em>x</em> = 3 tan(<em>t</em> ) and d<em>x</em> = 3 sec²(<em>t </em>) d<em>t</em> :


(b) The series

converges by comparison to the convergent <em>p</em>-series,

(c) The series

converges absolutely, since

That is, ∑ (-1)ⁿ (<em>n</em> ² + 9)/<em>e</em>ⁿ converges absolutely because ∑ |(-1)ⁿ (<em>n</em> ² + 9)/<em>e</em>ⁿ| = ∑ (<em>n</em> ² + 9)/<em>e</em>ⁿ in turn converges by comparison to a geometric series.
Answer:
the answer is c your welcome
Step-by-step explanation:
Answer:
y = -1/3
x = 0
Step-by-step explanation:
3x-6y = 2 then 3x = 2+6y, x=(2+6y)/3
4x+3y = -1
substitute for x
4(2/3+2y)-6y = 2
8/3+8y-6y = 2
reduce
2y = 2-8/3
2y = -2/3
divide both sides by 2
y = -1/3
4x+3(-1/3) = -1
4x = 0
x = 0