Answer: T= 715 N
Explanation:
The only external force (neglecting gravity) acting on the swinging mass, is the centripetal force, which. in this case, is represented by the tension in the string, so we can say:
T = mv² / r
At the moment that the mass be released, it wil continue moving in a straight line at the same tangential speed that it had just an instant before, which is the same speed included in the centripetal force expression.
So the kinetic energy will be the following:
K = 1/2 m v² = 15. 0 J
Solving for v², and replacing in the expression for T:
T = 1.9 Kg (3.97)² m²/s² / 0.042 m = 715 N
One-dimensional motion can be plotted through the Cartesian plane which has a coordinates of (x,y). These coordinates are the abscissa and ordinates. Since, there are two coordinates, the answer to the second item is two.
The symbol that can be used to identify systems position is (x,y). Since this is one dimensional motion, it is possible that one of the two coordinates becomes zero.
<u>Answer</u>
To increase friction for a better grip.
<u>Answer</u>
Most human beings do sweat hands especially on the palm. When this happens the person will not have a good grip of heavy objects because they will slide/slip from the hand.
<em>By applying the powder, you are trying to make the hand dry hence increasing the friction for a better grip. </em>
If the gymnast doesn't do this the parallel bars may slip from the hands and injure himself or herself.
Answer:
4.123 * 10∧4 kg
Explanation:
mass of car M' = 3.34 * 10∧4 kg
energy loss E = 19/100 K
from law of conservation of momentum ,
M' V' = ( M' + M'' ) v
V = M' V' / ( M' + M'' )
Initial kinetic energy is K' = (M' V')² / 2
final kinetic energy K" = 81 K' /100
= (M' V')² 81 / (200) = ( M' + M'' ) v²/ 2
therefore , M' / ( M' + M" ) = 0.81
mass of caboose is , M" = 1.234 M' - M'
M" = .234 M'
= 0,234 ( 3.34 * 10∧4 kg)
= 4.123 * 10∧4 kg
Part A: a->positive when velocity is increasing a->negative when velocity is decreasing a->zero when velocity is constant