Answer:
k = 9.6 x 10^5 N/m or 9.6 kN/m
Explanation:
First, we need to use the expression to calculate the spring constant which is:
w² = k/m
Solving for k:
k = w²*m
To get the angular velocity:
w = 2πf
The problem is giving the linear velocity of the car which is 5.7 m/s. With this we can calculate the frequency of the car:
f = V/x
f = 5.7 / 4.9 = 1.16 Hz
Now the angular velocity:
w = 2π*1.16
w = 7.29 rad/s
Finally, solving for k:
k = (7.29)² * 1800
k = 95,659.38 N/m
In two significant figures it'll ve 9.6 kN/m
1) 3 miles/Hour
The speed is defined as the distance covered divided by the time taken:

where
d = 1.5 mi is the distance
t = 0.5 h is the time taken
Substituting,

2) 1.34 m/s south
Velocity, instead, is a vector, so it has both a magnitude and a direction. We have:
is the displacement in meters
is the time taken in seconds
Substituting,

And the direction of the velocity is the same as the displacement, so it is south.
Answer:
A real emf device has an internal resistance, but an ideal emf device does not.
The resultant force of both forces is 15.62 N.
<h3 /><h3>What is resultant?</h3>
The Resultant of forces is a single force obtained when two or more forces are combined.
To calculate the resultant of the force, we use the formula below.
Formula:
- R = √[a²+b²-2abcos∅]..................... Equation 1
Where:
- R = Resultant of the forces.
- ∅ = Angle between both forces
From the question,
Given:
Substitute these values into equation 1
- R = √[8²+10²-2×8×10cos120°]
- R = √[64+100-160cos120°]
- R =√ [164-160(-0.5)]
- R = √[164+80]
- R = √(244)
- R = 15.62 N
Hence, the resultant force of both forces is 15.62 N.
Learn more about resultant force here: brainly.com/question/25239010
#SPJ1
Answer:
b) the reflected pulse returns inverted while the transmitted pulse is right side up
Explanation:
A wave pulse traveling to the right along a thin cord reaches a discontinuity where the rope becomes thicker and heavier.
Then, as far as orientation of reflected and transmitted pulses are concerned the reflected pulse returns inverted while the transmitted pulse is right side up.
Hence the correct answer is b.