<h2>
Answer:</h2>
1000th multiple of the standard reference level for intensities.
<h2>
Explanation:</h2>
The sound intensity level (β), measured in decibels, of a sound with an intensity of I is defined as follows;
β = 10 log (I / I₀) --------------------(i)
Where;
I₀ = reference intensity
Given from the question;
β = sound level = 30dB
Substitute this value into equation (i) as follows;
30 = 10 log (I / I₀)
Divide both sides by 3;
3 = log (I / I₀)
Take antilog of both sides;
10^(3) = (I / I₀)
1000 = I / I₀
Solve for I;
I = 1000I₀
Therefore the intensity of the sound is 1000 times the standard reference level for intensities (I₀)
Answer:
if this is on odyssey ware then i can edit my answer to help you
Explanation:
Answer:
The correct answer is The plates smash together with no subduction. I just took this on Edge. Glad I could help!
To solve this problem it is necessary to consider two concepts. The first of these is the flow rate that can be defined as the volumetric quantity that a channel travels in a given time. The flow rate can also be calculated from the Area and speed, that is,
Q = V*A
Where,
A= Cross-sectional Area
V = Velocity
The second concept related to the calculation of this problem is continuity, which is defined as the proportion that exists between the input channel and the output channel. It is understood as well as the geometric section of entry and exit, defined as,


Our values are given as,


Re-arrange the equation to find the first ratio of rates we have:



The second ratio of rates is



Answer:
4.71 eV
Explanation:
For an electromagnetic wave with wavelength

the energy of the photons in the wave is given by

where h is the Planck constant and c the speed of light. Therefore, this is the minimum energy that a photon should have in order to extract a photoelectron from the copper surface.
The work function of a metal is the minimum energy required by the incident light in order to extract photoelectrons from the metal's surface. Therefore, the work function corresponds to the energy we found previously. By converting it into electronvolts, we find:
