Answer:
Explanation:
From the question we are told that:
Force P=88Ib
Mass of crate M_c=210Ib
Generally the equation for Frictional force F is mathematically given by
with
Therefore since Static Friction supersedes applied force body remains at rest.
Frictional force =88Ib (negative)
The west constituent of their sequence needs to cancel out 58 mph crosswind. Subsequently a northwest direction is a 45-degree angle up to even with the destination. That is the third point out of the triangle and the right angle is at the destination. The top side is the west constituent of their flight the vertical side is their resultant travel and the hypotenuse is their definite distance flown. Since the 58 mph crosswind was negated by flying northwest, the distance from the beginning to the destination must be the same distance as the west component of their travel. The hypotenuse is square root of twice the side since it has 2 identical sides.
c = sqrt (58^2 + 58^2) = sqrt (6728) = 82.02
Alternative solution:
c = sqrt (2) * 58 = 1.414 * 58 = 82.02
Therefore, they have to fly 82.02 mph
Answer:
The average speed for the entire run is 12 km/h.
Explanation:
The average speed is given by the following equation:
Where:
: is the total distance
: is the total time
If during the first hour, they ran a total of 13 kilometers and then, they ran 5.0 kilometers during the next half an hour we have:
Hence, the average speed is:
Therefore, the average speed for the entire run is 12 km/h.
I hope it helps you!
The formula for kinetic energy is equal to 1/2mv^2, where "m" is the mass of the object (in kilograms) and "v" is equal to the velocity of the object (in meters per second). To calculate the speed, simply plug in the values and solve.
KE = 0.5mv^2
304 J = 0.5(0.3 kg)v^2 -mass converted from grams to kilograms
v = 45.02 m/s
The baseball is travelling about 45.02 meters per second.
Hope this helps!
I believe the answer is D. Have a good day.