Answer:
Energy exists in many different forms. Examples of these are: light energy, heat energy, mechanical energy, gravitational energy, electrical energy, sound energy, chemical energy, nuclear or atomic energy and so on. Each form can be converted or changed into the other forms.
During the first phase of acceleration we have:
v o = 4 m/s; t = 8 s; v = 13 m/s, a = ?
v = v o + a * t
13 m/s = 4 m / s + a * 8 s
a * 8 s = 9 m/s
a = 9 m/s : 8 s
a = 1.125 m/s²
The final speed:
v = ?; v o = 13 m/s; a = 1.125 m/s² ; t = 16 s
v = v o + a * t
v = 13 m/s + 1.125 m/s² * 16 s
v = 13 m/s + 18 m/s = 31 m/s
Based on internet sources, <span>the basic formulas are: v^2/r = (at)^2/r = a ==> at^2 = r ==> t = sqrt(r/a).
</span>
<span>Assuming the missing units are mutually compatible, as in the following example, they don't need to be known. </span>
<span>Acceleration = 1.6 cramwells/s^2 </span>
<span>Radius = 150 cramwells </span>
<span>t = sqrt(150/1.6) = 9.68 s.
I hope this helps.</span>
Given the speed and the distance, to find time you can use the formula speed is equal to distance over time. From there you can manipulate the equation for time to equal the distance divided by speed. Time is equal to 18.4 meters divided by 35m/s which equals 0.526 seconds.