At the highest point in its trajectory, the ball's acceleration is zero but its velocity is not zero.
<h3>What's the velocity of the ball at the highest point of the trajectory?</h3>
- At the highest point, the ball doesn't go more high. So its vertical velocity is zero.
- However, the ball moves horizontal, so its horizontal component of velocity is non - zero i.e. u×cosθ.
- u= initial velocity, θ= angle of projection
<h3>What's the acceleration of the ball at the highest point of projectile?</h3>
- During the whole projectile motion, the earth exerts the gravitational force with a acceleration of gravity along vertical direction.
- But as there's no acceleration along vertical direction, so the acceleration along vertical direction is zero.
Thus, we can conclude that the acceleration is zero and velocity is non-zero at the highest point projectile motion.
Disclaimer: The question was given incomplete on the portal. Here is the complete question.
Question: Player kicks a soccer ball in a high arc toward the opponent's goal. At the highest point in its trajectory
A- neither the ball's velocity nor its acceleration are zero.
B- the ball's acceleration points upward.
C- the ball's acceleration is zero but its velocity is not zero.
D- the ball's velocity points downward.
Learn more about the projectile motion here:
brainly.com/question/24216590
#SPJ1
Infrared is created by detecting the produced radiation coming off of clouds. The temperature of the cloud will define the wavelength of radiation produced from the cloud. The benefit of the infrared imagery is that can be used day and night to conclude the temperature of the cloud tops and earth surface structures and to get the general idea of how clouds are. Based on the general guidelines to define cloud features, if the cloud is bright white on infrared then it is a high cloud or has a cloud top that is developed high into the troposphere. In this way infrared images actually display patterns of temperature on a gray scale such that at one extreme dark gray is warm and at the other extreme bright white is cold. A color scale is used to portray temperature and some improved infrared images show two or more gray scale sequences. High cold clouds are brighter white than low warm clouds.
Answer:
(a) 42.28°
(b) 37.08°
Explanation:
From the principle of refraction of light, when light wave travels from one medium to another medium, we have:
= sinθ
/sinθ
In the given problem, we are given the refractive indices of light which are parallel and perpendicular to the axis of the optical lens as 1.4864 and 1.6584 respectively.
For critical angle θ
= θ
, θ
= 90°; 
(a) 
= sinθ
/sin90°
0.6728 = sinθ![_{c}θ[tex]_{c} = sin^(-1) 0.6728 = 42.28°(b) [tex]n_{a} = 1.6584](https://tex.z-dn.net/?f=_%7Bc%7D%3C%2Fp%3E%3Cp%3E%CE%B8%5Btex%5D_%7Bc%7D%20%3D%20sin%5E%28-1%29%200.6728%20%3D%2042.28%C2%B0%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%28b%29%20%5Btex%5Dn_%7Ba%7D%20%3D%201.6584)
= sinθ
/sin90°
0.60299 = sinθ[tex]_{c}
θ[tex]_{c} = sin^(-1) 0.60299 = 37.08°
Answer:
Nuclear Forces
Explanation:
Because strong nuclear forces work best within shorter distance.
Answer:
Energy = 0.25 kilowatt-hour
Explanation:
Given the following data;
Power = 25 Watts
Time = 10 hours
Power can be defined as the energy required to do work per unit time.
Mathematically, it is given by the formula;
To find the energy consumed;
Energy = power * time
Substituting into the formula, we have;
Energy = 25 * 10
Energy = 250 Watt-hour
To convert to kilowatt-hour, we would divide by 1000;
Energy = 250/1000
Energy = 0.25 kilowatt-hour