Answer:
Explanation:
<u>Instant Velocity and Acceleration
</u>
Give the position of an object as a function of time y(x), the instant velocity can be obtained by

Where y'(x) is the first derivative of y respect to time x. The instant acceleration is given by

We are given the function for y

Note we have changed the last term to be quadratic, so the question has more sense.
The velocity is

And the acceleration is

<span>The change in the electron's potential energy is equal to the work done on the electron by the electric field. The electron's potential energy is the stored energy relative to the electron's position in the electric field. Vcloud - Vground represents the change in Voltage. This voltage quantity is given to be 3.50 x 10^8 V, with the electron at the lower potential. The formula for calculating the change in the electron's potential energy (EPE) is found by charge x (Vcloud - Vground) = (EPEcloud - EPE ground) where charge is constant = 1.6 x 10^-19. Filling in the known quantities results in the expression 1.6 x 10^-19 (3.50 x 10^8) = (EPEcloud - EPEground) = 5.6 x 10^-11. Therefore, the change in the electron's potential energy from cloud to ground is 5.6 x 10^-11 joules.</span>
Initial speed = 56mph
Final speed = 35mph
Time taken = 6.7seconds...
Converting the time to hour.. Divide by 3600..
= 6.7/3600
=0.00186hour..
Acceleration = v-u/t
a = 35-56/0.00186
a = -11283.6mph²
The negative sign shows that it decelerated...
V² = u²+2as
(35)² = (56)² + 2×-11283.6×s
Where s is the distance covered within that time...
1225 = 3136 - 22567.2s
22567.2s = 3136-1225
22567.2s = 1911
S = 1911/22567.2
S = 0.08468miles...
But at the end of the question we were made to understand that 1miles = 5280ft
Therefore 0.08468miles = (0.08468×5280)ft
= 447. 11feets...
Which is approximately 447ft.....
Hope this helped.... ?
Answer:
19.5°
Explanation:
The energy of the mass must be conserved. The energy is given by:
1) 
where m is the mass, v is the velocity and h is the hight of the mass.
Let the height at the lowest point of the be h=0, the energy of the mass will be:
2) 
The energy when the mass comes to a stop will be:
3) 
Setting equations 2 and 3 equal and solving for height h will give:
4) 
The angle ∅ of the string with the vertical with the mass at the highest point will be given by:
5) 
where l is the lenght of the string.
Combining equations 4 and 5 and solving for ∅:
6) 
While IR represents electromagnetic radiation with wavelengths longer than those of visible light, UV represents wavelengths shorter than visible light.