Answer:
Explanation:
Expression for velocity of wave produced in a hanging wire can be given as follows
Velocity v = 
where T is tension in wire and m is mass of wire per unit length.
In the given case
T = Mg + mg
= Mg
neglecting weight of rope
mass of the rope per unit length
= m / L
Velocity of wave
= 
= 
Answer:
5080.86m
Explanation:
We will divide the problem in parts 1 and 2, and write the equation of accelerated motion with those numbers, taking the upwards direction as positive. For the first part, we have:


We must consider that it's launched from the ground (
) and from rest (
), with an upwards acceleration
that lasts a time t=9.7s.
We calculate then the height achieved in part 1:

And the velocity achieved in part 1:

We do the same for part 2, but now we must consider that the initial height is the one achieved in part 1 (
) and its initial velocity is the one achieved in part 1 (
), now in free fall, which means with a downwards acceleration
. For the data we have it's faster to use the formula
, where d will be the displacement, or difference between maximum height and starting height of part 2, and the final velocity at maximum height we know must be 0m/s, so we have:

Then, to get
, we do:



And we substitute the values:

Parallel has more than one circuit or form of energy
series has only one form of energy circuit
Explanation:
it can be used to show how the parts of the cycle relate to one another
Previous rocks melt and collide and to form igneous rocks.
Igneous rocks disintegrate due to weather disruptions and get carried away by water, where they form sedimentary rock strata by lithification.
Igneous and sedimentary change by heat and pressure to form metamorphic rocks.
Metamorphic rocks melt and become igneous rocks.