The answer would be D because is the strongest form of radiation
Answer:
1.03 m/s
Explanation:
I'm too lazy to write the explanation down but my teacher graded this and it was right
The speed of the block after it has moved the given distance away from the initial position is 1.1 m/s.
<h3>Angular Speed of the pulley </h3>
The angular speed of the pulley after the block m1 fall through a distance, d, is obatined from conservation of energy and it is given as;
K.E = P.E
![\frac{1}{2} mv^2 + \frac{1}{2} I\omega^2 = mgh\\\\\frac{1}{2} m_2v_0^2 + \frac{1}{2} \omega^2(m_1R^2_2 + m_2R_2^2) + \frac{1}{2} \omega^2( \frac{1}{2} MR_1^2 + \frac{1}{2} MR_2^2) = m_1gd- \mu_km_2gd\\\\\frac{1}{2} m_2v_0^2 + \frac{1}{2} \omega^2[R_2^2(m_1 + m_2)+ \frac{1}{2} M(R_1^2 + R_2^2)] = gd(m_1 - \mu_k m_2)\\\\](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20mv%5E2%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20I%5Comega%5E2%20%3D%20mgh%5C%5C%5C%5C%5Cfrac%7B1%7D%7B2%7D%20m_2v_0%5E2%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%5Comega%5E2%28m_1R%5E2_2%20%2B%20m_2R_2%5E2%29%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%5Comega%5E2%28%20%5Cfrac%7B1%7D%7B2%7D%20MR_1%5E2%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20MR_2%5E2%29%20%3D%20m_1gd-%20%5Cmu_km_2gd%5C%5C%5C%5C%5Cfrac%7B1%7D%7B2%7D%20m_2v_0%5E2%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%5Comega%5E2%5BR_2%5E2%28m_1%20%2B%20m_2%29%2B%20%5Cfrac%7B1%7D%7B2%7D%20M%28R_1%5E2%20%2B%20R_2%5E2%29%5D%20%3D%20gd%28m_1%20-%20%5Cmu_k%20m_2%29%5C%5C%5C%5C)
![\frac{1}{2} m_2v_0 + \frac{1}{4} \omega^2[2R_2^2(m_1 + m_2) + M(R^2_1 + R^2_2)] = gd(m_1 - \mu_k m_2)\\\\2m_2v_0 + \omega^2 [2R_2^2(m_1 + m_2) + M(R^2_1 + R^2_2)] = 4gd(m_1 - \mu_k m_2)\\\\\omega^2 [2R_2^2(m_1 + m_2) + M(R^2_1 + R^2_2)] = 4gd(m_1 - \mu_k m_2) - 2m_2v_0^2\\\\\omega^2 = \frac{ 4gd(m_1 - \mu_k m_2) - 2m_2v_0^2}{2R_2^2(m_1 + m_2) + M(R^2_1 + R^2_2)} \\\\\omega = \sqrt{\frac{ 4gd(m_1 - \mu_k m_2) - 2m_2v_0^2}{2R_2^2(m_1 + m_2) + M(R^2_1 + R^2_2)}} \\\\](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20m_2v_0%20%2B%20%5Cfrac%7B1%7D%7B4%7D%20%5Comega%5E2%5B2R_2%5E2%28m_1%20%2B%20m_2%29%20%2B%20M%28R%5E2_1%20%2B%20R%5E2_2%29%5D%20%3D%20gd%28m_1%20-%20%5Cmu_k%20m_2%29%5C%5C%5C%5C2m_2v_0%20%2B%20%5Comega%5E2%20%5B2R_2%5E2%28m_1%20%2B%20m_2%29%20%2B%20M%28R%5E2_1%20%2B%20R%5E2_2%29%5D%20%3D%204gd%28m_1%20-%20%5Cmu_k%20m_2%29%5C%5C%5C%5C%5Comega%5E2%20%5B2R_2%5E2%28m_1%20%2B%20m_2%29%20%2B%20M%28R%5E2_1%20%2B%20R%5E2_2%29%5D%20%3D%20%204gd%28m_1%20-%20%5Cmu_k%20m_2%29%20-%202m_2v_0%5E2%5C%5C%5C%5C%5Comega%5E2%20%3D%20%5Cfrac%7B%204gd%28m_1%20-%20%5Cmu_k%20m_2%29%20-%202m_2v_0%5E2%7D%7B2R_2%5E2%28m_1%20%2B%20m_2%29%20%2B%20M%28R%5E2_1%20%2B%20R%5E2_2%29%7D%20%5C%5C%5C%5C%5Comega%20%3D%20%5Csqrt%7B%5Cfrac%7B%204gd%28m_1%20-%20%5Cmu_k%20m_2%29%20-%202m_2v_0%5E2%7D%7B2R_2%5E2%28m_1%20%2B%20m_2%29%20%2B%20M%28R%5E2_1%20%2B%20R%5E2_2%29%7D%7D%20%5C%5C%5C%5C)
Substitute the given parameters and solve for the angular speed;

<h3>Linear speed of the block</h3>
The linear speed of the block after travelling 0.7 m;
v = ωR₂
v = 35.39 x 0.03
v = 1.1 m/s
Thus, the speed of the block after it has moved the given distance away from the initial position is 1.1 m/s.
Learn more about conservation of energy here: brainly.com/question/24772394
Hi there!
We can use the rotational equivalent of Newton's Second Law:

Στ = Net Torque (Nm)
I = Moment of inertia (kgm²)
α = Angular acceleration (rad/sec²)
We can plug in the given values to solve.

matter = solid, liquid gas.
energy typyes, kinetc in a gas, kinetc and electrostatic in solids and liquids