Answer:
121.43 m
Explanation:
Solution
Since standing waves are set up, the expression for the first mode of frequency is f₁ = nv/4L. The next mode of frequency is f₂ = (n + 2)v/4L where L is the length of the tunnel and v the speed of sound. f₁ = 5.0 Hz, f₂ = 6.4 Hz, v = 340 m/s. We now subtract f₂ - f₁ = (n + 2)v/4L - nv/4L = v/2L.
So f₂ - f₁ = v/2L. and L = v/2(f₂ - f₁) = 340/[2× (6.4-5.0)] = 340/2×1.4 = 340/2.8 = 121.43 m
So, it is 121.43 m far to the end of the tunnel.
Answer:
292796435 seconds ≈ 300 million seconds
Explanation:
First of all, the speed of the car is 121km/h = 33.6111 m/s
The radius of the planet is given to be 7380 km = 7380000 m
From the relationship between linear velocity and angular velocity i.e., v=rw, the angular velocity of the car will be w=v/r = 33.6111/7380000 = 0.000000455 rad/s = 4.55 x 10⁻⁶ rad/sec
If the angular velocity of the vehicle about the planet's center is 9.78 times as large as the angular velocity of the planet then we have
w(vehicle) = 9.78 x w(planet)
w(planet) = w(vehicle)/9.78 = 4.55 x 10⁻⁶ / 9.78 = 4.66 x 10⁻⁷ rad/sec
To find the period of the planet's rotation; we use the equation
w(planet) = 2π÷T
Where w(planet) is the angular velocity of the planet and T is the period
From the equation T = 2π÷w = 2×(22/7) ÷ 4.66 x 10⁻⁷ = 292796435 seconds
Therefore the period of the planet's motion is 292796435 seconds which is approximately 300, 000, 000 (300 million) seconds
Answer: The sun’s radiation consists of small, massless packets of energy called photons. They travel seamlessly through space; whenever they strike any object, the object absorbs photons and its energy is increased, which then heats it up.
Explanation:
Answer:
KE = 10530 J or 10.53 KJ
Explanation:
The formula for kinetic energy is KE = 1/2 mv^2
Let's apply the formula:
KE = 1/2 mv^2
KE = 1/2 (65kg) (18m/s)^2
KE = 10530 J or 10.53 KJ
Explanation:
Since the balloon is not accelerating means that the net force on the balloon is zero. This implies that the weight of balloon must be equal to the buoyant force on balloon.
Hence, the buoyant force equals the weight of air displaced by the balloon, also 20,000 N.
Weight of the air displaced = density of air × volume
The density of air at 1 atm pressure and 20º C is 1.2 kg/m³
the volume V = 20,000/(1.2×9.8) = 1700 m³