Answer:
You can describe the motion of an object by its position, speed, direction, and acceleration. An object is moving if its position relative to a fixed point is changing. idk if this helps.
Explanation:
Answer:
r = 0.05 m = 5 cm
Explanation:
Applying ampere's law to the wire, we get:

where,
r = distance of point P from wire = ?
μ₀ = permeability of free space = 4π x 10⁻⁷ N/A²
I = current = 2 A
B = Magnetic Field = 8 μT = 8 x 10⁻⁶ T
Therefore,

<u>r = 0.05 m = 5 cm</u>
Answer:
a) 19.4 m/s
b) 19 m/s
Explanation:
a) In the given question,
the potential energy at the initial point = Ui = 0
the potential energy at the final point = Uf = mgh
the kinetic energy at the initial point = Ki = 1/2 mv₀².
the kinetic energy at the final point = Kf = 0
work done by air= Ea= fh = 0.262 N
Now, using the law of conservation of energy
initial energy= final energy
Ki +Ui = Kf + Uf +Ea
1/2 mv₀² + 0 = 0 + mgh + fh
1/2 mv₀² = mgh + fh
h = v₀²/ 2g (1 +f/w)
calculate m
m= w/g = 5.29 /9.8
= 0.54 kg
h = 20 ²/ (2 x9.80) x (1 0.265/5.29)
h = 19.4 m.
b) 1/2 mv² + 2fh = 1/2 mv₀²
Vg = 19 m/s
Via the half-life equation:

Where the time elapse is 11,460 year and the half-life is 5,730 years.

Therefore after 11,460 years the amount of carbon-14 is one fourth (1/4) of the original amount.
It must gain an electron because if the proton number was to change it would no longer be the same element.