Answer:
see explanation for answer
Explanation:
salivary gland: 1
stomach: 2
small intestine: 6
liver: 4
gallbladder: 5
large intestine: 3
The answers correspond with the numbers on the text boxes, so you would drag number 1 to the salivary gland and so on.
The product of prime polynomials is equivalent to 36x3 – 15x2 – 6x is letter B which is 3x(3x – 2)(4x 1). Below is the solution.
3x(3x - 2) (4x + 1)
= 9x2 - 6x (4x + 1)
= 36x3 + 9x2 + - 24x2 - 6x
= 36x3 - 15x2 - 6x
Answer:
<h2>377 kPa</h2>
Explanation:
The original pressure can be found by using the formula for Boyle's law which is
where
P1 is the initial pressure
P2 is the final pressure
V1 is the initial volume
V2 is the final volume
Since we're finding the original pressure
150 kPa = 150,000 Pa
We have
We have the final answer as
<h3>377 kPa</h3>
Hope this helps you
most events like the rising and setting of the Sun were used a natural measurement of time until recently.
Solar time, which is based on the motion of the Sun, is not the only way of measuring time, however. One might keep track of the regular appearance of the full Moon. That event occurs once about every 29.5 solar days. The time between appearances of new moons, then, could be used to define a month.
One also can use the position of the stars for measuring time. The system is the same as that used for the Sun, since the Sun itself is a star. All other stars also rise and set on a regular basis.
Although any one of these systems is a satisfactory method for measuring some unit of time, such as a day or a month, the systems may conflict with each other. It is not possible, for example, to fit 365 solar days into 12 or 13 lunar months exactly. This problem creates the need for leap years
Read more: http://www.scienceclarified.com/Ti-Vi/Time.html#ixzz5e1E705sr
I abbreviated most of it but there is a ton more at this link if you still need more.
Answer:
question 6: winter solstice
question 7: rotation is when an object spins around its axis, revolution is when an object travels in a path around another
question 8: the rotational period is equal to the period of revolution for the moon
question 10: true