Moving from Ethanol through Propanol to Butanol the physical properties like boiling points, surface tension and viscosity increases because of the increases in intermolecular interactions between the molecules of given compounds.
Explanation:
Ethanol, propanol and butanol all have hydroxyl groups in common, means all have hydrogen bond intractions between their molecules. So, taking the hydrogen bonding interaction constant we are left with only the difference in the number of carbon atoms.
Butanol has the greatest physical properties than other two because it has four carbon atom chain. So, as we know the London Dispersion forces or Van der Waal forces increases with increase in molecular size and chain length of hydrocarbon.
Therefore, the strength of London forces is greater in butanol than other two while ethanol has the smallest chain comparatively hence, lowest physical properties.
Answer:
A. To study the chemical composition of the surface of a planet
Explanation:
Strictly speaking, a spectrometer is any instrument used to view and analyze a range (or a spectrum) of a given characteristic for a substance (for example, a range of mass-to-charge values as in mass spectrometry), or a range of wavelengths as in absorption spectrometry like nuclear magnetic radiation spectroscopy
-hope this helps!
Answer: the distance of energy from point d to e
<h3>
Answer:</h3>
1.85 M
<h3>
Explanation:</h3>
<u>We are given;</u>
- Number of moles as 0.50 mol
- Volume of the solution is 270 ml
But, 1000 mL = 1 L
- Thus, volume of the solution is 0.27 L
We are required to calculate the molarity of the solution;
- Molarity refers to the concentration of a solution in moles per liter.
- It is calculated by dividing number of moles with the volume.
Molarity = Moles ÷ Volume
In this case;
Molarity = 0.50 moles ÷ 0.27 L
= 1.85 Mol/L or 1.85 M
Therefore, molarity of the solution is 1.85 M
Energy cannot be destroyed or created, but energy could be transformed or transferred. For example a skiier skiing from the mouth can have potential energy transferred into kinetic energy.