Answer:
B. It is important that people are not harmed for the sake of science.
Explanation:
Ethical principles stress the need to do good and cause no harm.A researcher is therefore required to;
- obtain an informed consent from the participants
- minimize or eliminate risk of harm to participants
- protect the anonymity and confidentiality of participants
- Apply no deceptive techniques
- allow the right to withdraw from the study by a participant
Answer:
<h2>Organic molecules are important to living things because life is based on the properties of carbon. Carbon is an important element because it can </h2><h2>form four covalent bonds. ... The carbon skeletons contain the functional groups that are involved in biochemical reactions.</h2>
Explanation:
<h2>
<em><u>PLEASE</u></em><em><u> MARK</u></em><em><u> ME</u></em><em><u> BRAINLIEST</u></em><em><u> AND</u></em><em><u> FOLLOW</u></em><em><u> ME</u></em><em><u> LOTS</u></em><em><u> OF</u></em><em><u> LOVE</u></em><em><u> FROM</u></em><em><u> MY</u></em><em><u> HEART</u></em><em><u> AND</u></em><em><u> SOUL</u></em><em><u> DARLING</u></em><em><u> TEJASWINI</u></em><em><u> SINHA</u></em><em><u> HERE</u></em><em><u> ❤️</u></em></h2>
Answer:
The predominant intermolecular force in the liquid state of each of these compounds:
ammonia (NH3)
methane (CH4)
and nitrogen trifluoride (NF3)
Explanation:
The types of intermolecular forces:
1.Hydrogen bonding: It is a weak electrostatic force of attraction that exists between the hydrogen atom and a highly electronegative atom like N,O,F.
2.Dipole-dipole interactions: They exist between the oppositely charged dipoles in a polar covalent molecule.
3. London dispersion forces exist between all the atoms and molecules.
NH3 ammonia consists of intermolecular H-bonding.
Methane has London dispersion forces.
Because both carbon and hydrogen has almost similar electronegativity values.
NF3 has dipole-dipole interactions due to the electronegativity variations between nitrogen and fluorine.
Electrons in an atom are found on different electron shells depending on how much energy they possess, and they determine how atoms will interact with each other. The outermost electron shell holds the valance electrons.
Answer:
101,37°C
Explanation:
Boiling point elevation is one of the colligative properties of matter. The formula is:
ΔT = kb×m <em>(1)</em>
Where:
ΔT is change in boiling point: (X-100°C) -X is the boiling point of the solution-
kb is ebulloscopic constant (0,52°C/m)
And m is molality of solution (mol of ethylene glycol / kg of solution). Moles of ethylene glycol (MW: 62,07g/mol):
203g × (1mol /62,07g) = <em>3,27moles of ethlyene glycol</em>
<em />
Molality is: 3,27moles of ethlyene glycol / (1,035kg + 0,203kg) = 2,64m
Replacing these values in (1):
X - 100°C = 0,52°C/m×2,64m
X - 100°C = 1,37°C
<em>X = 101,37°C</em>
<em></em>
I hope it helps!