The velocity of the tip of the second hand is 0.0158 m/s
Explanation:
First of all, we need to calculate the angular velocity of the second hand.
We know that the second hand completes one full circle in
T = 60 seconds
Therefore, its angular velocity is:

Now we can calculate the velocity of a point on the tip of the hand by using the formula

where
is the angular velocity
r = 15 cm = 0.15 m is the radius of the circle (the distance of the point from the centre of rotation)
Substituting,

Learn more about angular motion here:
brainly.com/question/9575487
brainly.com/question/9329700
brainly.com/question/2506028
#LearnwithBrainly
Answer:
The index of refraction of the liquid is n = 1.33 equivalent to that of water
Explanation:
Solution:-
- The index of refraction of light in a medium ( n ) determines the degree of "bending" of light in that medium.
- The index of refraction is material property and proportional to density of the material.
- The denser the material the slower the light will move through associated with considerable diffraction angles.
- The lighter the material the faster the light pass through the material without being diffracted as much.
- So, in the other words index of refraction can be expressed as how fast or slow light passes through a medium.
- The reference of comparison of how fast or slow the light is the value of c = 3.0*10^8 m/s i.e speed of light in vacuum or also assumed to be the case for air.
- so we can mathematically express the index of refraction as a ratio of light speed in the material specified and speed of light.
- The light passes through a liquid with speed v = 2.25*10^8 m/s :

- The index of refraction of the liquid is n = 1.33 equivalent to that of water.
From equation of motion v^2 = u^2 +2aS
Hence, the final velocity is 40 m/s.
<em><u>hope </u></em><em><u>it's </u></em><em><u>help </u></em><em><u>you</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>! </u></em>
<em><u>#</u></em><em><u>rishu</u></em>
Answer:
W=561.41 J
Explanation:
Given that
m = 51 kg
μk = 0.12
θ = 36.9∘
Lets F is the force applied by man
Given that block is moving at constant speed it mans that acceleration is zero.
Horizontal force = F cos θ
Vertical force = F sinθ
Friction force Fr= μk N
N + F sinθ = m g
N = m g - F sinθ
Fr = μk (m g - F sinθ)
For equilibrium
F cos θ = μk (m g - F sinθ)
F ( cos θ +μk sinθ) = μk (m g
Now by putting the values
F ( cos 36.9∘ + 0.12 x sin36.9∘)=0.12 x 51 x 10
F= 70.2 N
We know that Work
W= F cos θ .d
W= 70.2 x cos 36.9∘ x 10
W=561.41 J