Answer:
Explanation:
Given

mass of core
Average specific heat 
And rate of increase of temperature =
Now
P=

Thus ![\frac{\mathrm{d}T}{\mathrm{d} t}=[tex]\frac{1.60\times 10^5\times 0.3349}{150\times 10^6}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cmathrm%7Bd%7DT%7D%7B%5Cmathrm%7Bd%7D%20t%7D%3D%5Btex%5D%5Cfrac%7B1.60%5Ctimes%2010%5E5%5Ctimes%200.3349%7D%7B150%5Ctimes%2010%5E6%7D)

Answer:
Orbital motion results when the object’s forward motion is balanced by a second object’s gravitational pull.
Explanation:
The gravitational force is responsible for the orbital motion of the planet, satellite, artificial satellite, and other heavenly bodies in outer space.
When an object is applied with a velocity that is equal to the velocity of the orbit at that location, the body continues to move forward. And, this motion is balanced by the gravitational pull of the second object.
The orbiting body experience a centripetal force that is equal to the gravitational force of the second object towards the body.
The velocity of the orbit is given by the relation,

Where
V - velocity of the orbit at a height h from the surface
R - Radius of the second object
G - Gravitational constant
h - height from the surface
The body will be in orbital motion when its kinetic motion is balanced by gravitational force.

Hence, the orbital motion results when the object’s forward motion is balanced by a second object’s gravitational pull.
Answer:
Yes
Explanation:
Eclipses: Eclipses are also known as game of shadows where one object comes between the star(light source) and another object in a straight line such that the shadow of one object falls on other object. This can occur when the apparent size of the star and the object is almost same.
Talking about the Earth, the geometry is such that the Moon and the Sun are of same apparent size as seen from the Earth. Thus Lunar and Solar eclipse can be seen from the Earth. If we were to go on any other planet the same phenomenon can be seen provided the apparent size of moon and the Sun from that planet is same.
We have seen and recorded many such eclipses on Jupiter. These are from the perspective of Earth. When the moons of Jupiter comes exactly between the Sun and Jupiter the shadow of moon will fall on Jupiter. The places where the shadow falls, one will see a solar eclipse.
The eight planets of the Solar System arranged in order from the sun:
Mercury: 46 million km / 29 million miles (.307 AU)
Venus: 107 million km / 66 million miles (.718 AU)
Earth: 147 million km / 91 million miles (.98 AU)
Mars: 205 million km / 127 million miles (1.38 AU)
Jupiter: 741 million km /460 million miles (4.95 AU)
Saturn: 1.35 billion km / 839 million miles (9.05 AU)
Uranus: 2.75 billion km / 1.71 billion miles (18.4 AU)
Neptune: 4.45 billion km / 2.77 billion miles (29.8 AU)
Astronomers often use a term called astronomical unit (AU) to represent the distance from the Earth to the Sun.
+ Pluto (Dwarf Planet): 4.44 billion km / 2.76 billion miles (29.7 AU)