Answer:
sin=cos
tan=sin/cos
cos=sin
Explanation:
I've just answer what ive known
I hope its hepls to you
Answer:
The correct option is (b).
Explanation:
The relation between the wavelength and frequency is given by :

Where
v is the wave speed
f is the frequency of a wave
It is clear from the above equation that the wavelengths and frequency can vary inversely to produce the same wave speed.
Answer:
Option E is correct.
There must be a horizontal wind opposite the direction of the stone's motion, because ignoring air resistance when calculating the horizontal range would yield a value greater than 32 m.
Explanation:
Normally, ignoring air resistance, for projectile motion, the range (horizontal distance teavelled) of the motion is given as
R = (u² sin 2θ)/g
where
u = initial velocity of the projectile = 20 m/s
θ = angle above the horizontal at which the projectile was launched = 30°
g = acceleration due to gravity = 9.8 m/s²
R = (30² sin 60°) ÷ 9.8
R = 78.53 m
So, Normally, the stone should travel a horizontal distance of 78.53 m. So, travelling a horizontal distance of 32 m (less than half of what the range should be without air resistance) means that, the motion of the stone was impeded, hence, option E is correct.
There must be a horizontal wind opposite the direction of the stone's motion, because ignoring air resistance when calculating the horizontal range would yield a value greater than 32 m.
Hope this Helps!!!
Answer:
174.85 W
Explanation:
Area of plate = 3.14 x (15x 10⁻²)²
= 706.5 x 10⁻⁴ m²
heat being radiated by convection = 12 x 706.5 x 10⁻⁴ ( 180 - 15 )
= 139.88 W. This energy needs to be fed by heat source to maintain a constant temperature of 180 degree.
If power of electric source is P
P x .8 = 139.88
P = 139.88 / .8
= 174.85 W
Answer:
<em>17 m/s west</em>
Explanation:
Runner 1 has velocity = 10 m/s west
runner 2 has velocity = 7 m/s east
From the frame of reference of runner 2, we can imagine runner 2 as standing still, and runner 1 moving away from him, towards the west with their combined velocity of
velocity = 10 m/s + 7 m/s = <em>17 m/s west</em>