Answer:
97.5%
Explanation:
By the empirical rule (68-95-99.7),
- 68% of data are within <em>μ </em>- <em>σ</em> and <em>μ </em>+ <em>σ</em>
- 95% of data are within <em>μ </em>- 2<em>σ</em> and <em>μ </em>+ 2<em>σ</em>
- 99.7% of data are within <em>μ </em>- 3<em>σ</em> and <em>μ </em>+ 2<em>σ</em>
<em>σ </em> and <em>μ</em> are the standard deviation and the mean respectively.
From the question,
<em>μ</em> = 7.2 cm
<em>σ</em> = 0.38 cm
7.96 = 7.2 + (<em>n</em> × 0.38)
<em>n</em> = 2
Hence, 7.96 represents <em>μ </em>+ 2<em>σ</em>.
P(X < <em>μ </em>+ 2<em>σ</em>) = P(X < <em>μ</em>) + P(<em>μ</em> < X < <em>μ </em>+ 2<em>σ</em>)
P(X < <em>μ</em>) is the percentage less than the mean = 50%.
P(<em>μ</em> < X < <em>μ </em>+ 2<em>σ</em>) is half of P(<em>μ </em>- 2<em>σ</em> < X < <em>μ </em>+ 2<em>σ</em>) = 95% ÷ 2 = 47.5%.
Considering this, for apples that are no more than 7.96 cm,
P(X < 7.96) = P(X < 7.2) + P(7.2 < X < 7.96) = 50% + 47.5% = 97.5%
<em />
The scientists should best deal with this measurement by stating that there was an error during measuring and collect further data.
Answer:
Therefore,
The speed of the wave on the longer wire is 95 m/s.
Explanation:
Given:
For Short wire, speed is

Let length of Short and Longer wire be
such that

To Find:
Speed on the longer wire
Solution:
The speed of a pulse or wave on a string under tension can be found with the equation,

Where,
= Tension on the wire
L = Length of Sting
m = mass of String
So here we have,
= same

Therefore,
......equation ( 1 )
And
.......equation ( 2 )
Dividing equation 1 by equation 2 and on Solving we get

Therefore,

Therefore,
The speed of the wave on the longer wire is 95 m/s.
Answer:
Magnitude of electric field is 1.06 x
V/m along negative X-direction
Explanation:
Given: initial velocity of proton = u = 3.5 x
m/s
final velocity of proton = v = 0 m/s
initial point
= 0.2 m and final point is
= 0.8 m
According to conservation of energy:
change in in kinetic energy = change in potential energy of proton
⇒
where q and m is the charge and mass of proton E is the electric field ,
and
is the initial and final position of proton
on substituting the respected values we get,
1.023 x
= 9.6 x
x E
⇒ E = 1.06 x
V/m
external force is opposite to the motion as velocity of proton decreases with distance.
Therefore, magnitude of electric field is 1.06 x
V/m along negative X-direction